Citation: |
[1] |
V. I. Arnold and Yu. S. Ilyashenko, Ordinary differential equations, Encyclopaedia of Math. Sci. 1, Dynamical Systems, 1 (1988), 1-148, Springer-Verlag, Berlin. |
[2] |
P. Bonckaert, V. Naudot and J. Yang, Linearization of germs of hyperbolic vector fields, C. R. Math. Acad. Sci. Paris, 336 (2003), 19-22. |
[3] |
I. U. Bronstein and A. Ya. Kopanskii, "Smooth Invariant Manifolds and Normal Forms," World Scientific, River Edge, NJ, 1994.doi: 10.1142/9789812798749. |
[4] |
A. D. Bruno, "Local Methods in Nonlinear Differential Equations," Springer-Verlag, Berlin, 1989. |
[5] |
K.-T. Chen, Equivalence and decomposition of vector fields about an elementary critical point, Amer. J. Math., 85 (1963), 693-722.doi: 10.2307/2373115. |
[6] |
Yu. S. Ilyashenko and S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, Russian Math. Surveys, 46 (1991), 1-43.doi: 10.1070/RM1991v046n01ABEH002733. |
[7] |
M. Martens, V. Naudot and J. Yang, A strange attractor with large entropy in the unfodling of a low resonant degenerate homoclinic orbit, Intern. Journ. of Bifurcation & Chaos, 16 (2006), 3509-3522.doi: 10.1142/S0218127406016951. |
[8] |
V. Naudot, Strange attractor in the unfolding of an inclination-flip homoclinic orbit, Ergodic Theory and Dynamical Systems, 16 (1996), 1071-1086. |
[9] |
V. Naudot and J. Yang, Linearization of families of germs of hyperbolic vector fields, Dynamical Systems, 23 (2008), 467-489.doi: 10.1080/14689360802331162. |
[10] |
V. S. Samovol, Linearization of systems of differential equations in a neighbourhood of invariant toroidal manifolds, Proc. Moscow Math. Soc., 38 (1979), 187-219. |
[11] |
V. S. Samovol, A necessary and sufficient condition of smooth linearization of an autonomous planar system in a neighborhood of a critical point, Math. Notes, 46 (1989), 543-550.doi: 10.1007/BF01159105. |
[12] |
S. Sternberg, On the structure of local homeomorphisms of Euclidean $n$-space, II, Amer. J. Math., 80 (1958), 623-631.doi: 10.2307/2372774. |
[13] |
S. Sternberg, The structure of local homeomorphisms, III, Amer. J. Math., 81 (1959), 578-604.doi: 10.2307/2372915. |
[14] |
J. Yang, Polynomial normal forms for vector fields on $R^3$, Duke Math. J., 106 (2001), 1-18.doi: 10.1215/S0012-7094-01-10611-X. |