December  2010, 3(4): 719-768. doi: 10.3934/dcdss.2010.3.719

A parametrised version of Moser's modifying terms theorem

1. 

CeNDEF, Dept. of Quantitative Economics, University of Amsterdam, Roetersstraat 11, 1018 WB Amsterdam, Netherlands

Received  April 2009 Revised  May 2010 Published  August 2010

A sharpened version of Moser's 'modifying terms' KAM theorem is derived, and it is shown how this theorem can be used to investigate the persistence of invariant tori in general situations, including those where some of the Floquet exponents of the invariant torus may vanish. The result is 'structural' and can be applied to dissipative, Hamiltonian, and symmetric vector fields; moreover, we give variants of the result for real analytic, Gevrey regular ultradifferentiable and finitely differentiable vector fields. In the first two cases, the conjugacy constructed in the theorem is shown to be Gevrey smooth in the sense of Whitney on the set of parameters that satisfy a "Diophantine'' non-resonance condition.
Citation: Florian Wagener. A parametrised version of Moser's modifying terms theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 719-768. doi: 10.3934/dcdss.2010.3.719
References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Springer, (1988). Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods Of Classical Mechanics,", Springer, (1989). Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane,, Trudy Seminara Imeni I.G. Petrovskogo, 2 (1976), 23. Google Scholar

[4]

R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues,, Trudy Seminara Imeni I. G. Petrovskogo, 2 (1976), 37. Google Scholar

[5]

J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions,, Studia Mathematica, 99 (1991), 155. Google Scholar

[6]

H. W. Broer, M. C. Ciocci, H. Hanßmann and A. Vanderbauwhede, Quasi-periodic stability of normally resonant tori,, Physica D, 238 (2009), 309. doi: 10.1016/j.physd.2008.10.004. Google Scholar

[7]

H. W. Broer, M. C. Ciocci and H. Hanßmann, The quasi-periodic reversible Hopf bifurcation,, International Journal of Bifurcation and Chaos, 17 (2007), 2605. doi: 10.1142/S021812740701866X. Google Scholar

[8]

H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic tori in Hamiltonian systems,, Nonlinearity, 18 (2005), 1735. doi: 10.1088/0951-7715/18/4/018. Google Scholar

[9]

H. W. Broer, J. Hoo and V. Naudot, Normal linear stability of quasi-periodic tori,, Journal of Differential Equations, 232 (2007), 355. doi: 10.1016/j.jde.2006.08.022. Google Scholar

[10]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems: Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1996). Google Scholar

[11]

H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, "Unfoldings and Bifurcations of Quasi-periodic Tori,", Memoirs of the AMS, 83 (1990). Google Scholar

[12]

H. W. Broer, R. Roussarie and C. Simó, On the Bogdanov-Takens bifurcation for planar diffeomorphisms,, Proceedings of Equadiff '91 (C. Perelló, (1993), 81. Google Scholar

[13]

H. W. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms,, Ergodic Theory and Dynamical Systems, 16 (1996), 1147. Google Scholar

[14]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C,0)$,, Bulletin de la Société Mathématique de France, 128 (2000), 69. Google Scholar

[15]

A. Chenciner, Bifurcations de points fixes elliptiques. I. Courbes invariantes,, Publications Mathématiques de l'I.H.E.S., 61 (1985), 67. Google Scholar

[16]

M. C. Ciocci, "Bifurcation of Periodic Orbits and Persistence of Quasi Periodic Orbits in Families of Reversible Systems,", Ph.D. thesis, (2003). Google Scholar

[17]

H. H. de Jong, "Quasi-periodic Breathers in Systems of Weakly Coupled Pendulums: Applications of KAM Theory,", Ph.D. thesis, (1999). Google Scholar

[18]

G. Gentile and M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension,, Communications of Mathematical Physics, 289 (2009), 863. doi: 10.1007/s00220-009-0817-1. Google Scholar

[19]

A. González-Enríquez, À. Haro and R. de la Llave, Translated torus theory with parameters and applications,, In preparation., (). Google Scholar

[20]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", Graduate Texts in Mathematics, 14 (1973). Google Scholar

[21]

H. Hanßmann, The quasi-periodic centre-saddle bifurcation,, Journal of Differential Equations, 142 (1998), 305. doi: 10.1006/jdeq.1997.3365. Google Scholar

[22]

H. Hanßmann, "Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples,", Lecture Notes in Mathematics, 1893 (2007). Google Scholar

[23]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1952). Google Scholar

[24]

J. Hoo, "Quasi-periodic Bifurcations in a Strong Resonance: Combination Tones in Gyroscopic Stabilisation,", Ph.D. thesis, (2005). Google Scholar

[25]

L. Hörmander, "An Introduction to Complex Analysis in Several Variables,", North-Holland, (1990). Google Scholar

[26]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,", Springer, (1990). Google Scholar

[27]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas'',, Preprint 2009., (2009). Google Scholar

[28]

J. Moser, Convergent series expansions for quasi-periodic motions,, Mathematische Annalen, 169 (1967), 136. doi: 10.1007/BF01399536. Google Scholar

[29]

V. Poénaru, "Analyse Différentielle,", Lecture Notes in Mathematics, 371 (1974). Google Scholar

[30]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I: Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 223. doi: 10.1007/PL00001004. Google Scholar

[31]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II: Quantum Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 249. Google Scholar

[32]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753. doi: 10.1017/S0143385704000458. Google Scholar

[33]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Communications of Pure and Applied Mathematics, 35 (1982), 653. doi: 10.1002/cpa.3160350504. Google Scholar

[34]

A. S. Pyartli, Diophantine approximations on submanifolds of Euclidean space,, Functional Analysis and Applications, 3 (1969), 303. doi: 10.1007/BF01076316. Google Scholar

[35]

R. Roussarie and F. O. O. Wagener, A study of the Bogdanov-Takens bifurcation,, Resenhas IME-USP, 2 (1995), 1. Google Scholar

[36]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes,, Nachr. Ak. Wiss. Gött., 5 (1970), 67. Google Scholar

[37]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus,, Dynamical Systems, 38 (1975), 598. Google Scholar

[38]

M. B. Sevryuk, KAM tori: Persistence and smoothness,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/10/T01. Google Scholar

[39]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Univ. Press, (1970). Google Scholar

[40]

F. Takens, Forced oscillations and bifurcations,, Communications of the Mathematical Institute 3, (1974), 1. Google Scholar

[41]

F. O. O. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dynamical Systems, 18 (2003), 159. doi: 10.1080/1468936031000117857. Google Scholar

[42]

F. O. O. Wagener, On the quasi-periodic $d$-fold degenerate bifurcation,, Journal of Differential Equations, 216 (2005), 261. doi: 10.1016/j.jde.2005.06.013. Google Scholar

[43]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Differential Equations, 235 (2007), 609. doi: 10.1016/j.jde.2006.12.001. Google Scholar

[44]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I,, Communications in Pure and Applied Mathematics, 28 (1975), 91. Google Scholar

[45]

D. Zhang and J. Xu, Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Mathematical Analysis and Applications, 323 (2006), 293. doi: 10.1016/j.jmaa.2005.10.029. Google Scholar

[46]

D. Zhang and J. Xu, On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Discrete and Continuous Dynamical Systems, 16 (2006), 635. doi: 10.3934/dcds.2006.16.635. Google Scholar

[47]

D. Zhang and J. Xu, Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Nonlinear Analysis, 67 (2007), 2240. doi: 10.1016/j.na.2006.09.012. Google Scholar

[48]

D. Zhang and J. Xu, Invariant hyperbolic tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Acta Mathematica Sinica-English Series, 24 (2008), 1625. doi: 10.1007/s10114-008-6180-x. Google Scholar

show all references

References:
[1]

V. I. Arnol'd, "Geometrical Methods in the Theory of Ordinary Differential Equations,", Springer, (1988). Google Scholar

[2]

V. I. Arnol'd, "Mathematical Methods Of Classical Mechanics,", Springer, (1989). Google Scholar

[3]

R. I. Bogdanov, Bifurcations of a limit cycle of a certain family of vector fields on the plane,, Trudy Seminara Imeni I.G. Petrovskogo, 2 (1976), 23. Google Scholar

[4]

R. I. Bogdanov, The versal deformation of a singular point of a vector field on the plane in the case of zero eigenvalues,, Trudy Seminara Imeni I. G. Petrovskogo, 2 (1976), 37. Google Scholar

[5]

J. Bonet, R. W. Braun, R. Meise and B. A. Taylor, Whitney's extension theorem for nonquasianalytic classes of ultradifferentiable functions,, Studia Mathematica, 99 (1991), 155. Google Scholar

[6]

H. W. Broer, M. C. Ciocci, H. Hanßmann and A. Vanderbauwhede, Quasi-periodic stability of normally resonant tori,, Physica D, 238 (2009), 309. doi: 10.1016/j.physd.2008.10.004. Google Scholar

[7]

H. W. Broer, M. C. Ciocci and H. Hanßmann, The quasi-periodic reversible Hopf bifurcation,, International Journal of Bifurcation and Chaos, 17 (2007), 2605. doi: 10.1142/S021812740701866X. Google Scholar

[8]

H. W. Broer, H. Hanßmann and J. You, Bifurcations of normally parabolic tori in Hamiltonian systems,, Nonlinearity, 18 (2005), 1735. doi: 10.1088/0951-7715/18/4/018. Google Scholar

[9]

H. W. Broer, J. Hoo and V. Naudot, Normal linear stability of quasi-periodic tori,, Journal of Differential Equations, 232 (2007), 355. doi: 10.1016/j.jde.2006.08.022. Google Scholar

[10]

H. W. Broer, G. B. Huitema and M. B. Sevryuk, "Quasi-periodic Motions in Families of Dynamical Systems: Order Amidst Chaos,", Lecture Notes in Mathematics, 1645 (1996). Google Scholar

[11]

H. W. Broer, G. B. Huitema, F. Takens and B. L. J. Braaksma, "Unfoldings and Bifurcations of Quasi-periodic Tori,", Memoirs of the AMS, 83 (1990). Google Scholar

[12]

H. W. Broer, R. Roussarie and C. Simó, On the Bogdanov-Takens bifurcation for planar diffeomorphisms,, Proceedings of Equadiff '91 (C. Perelló, (1993), 81. Google Scholar

[13]

H. W. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphisms,, Ergodic Theory and Dynamical Systems, 16 (1996), 1147. Google Scholar

[14]

T. Carletti and S. Marmi, Linearization of analytic and non-analytic germs of diffeomorphisms of $C,0)$,, Bulletin de la Société Mathématique de France, 128 (2000), 69. Google Scholar

[15]

A. Chenciner, Bifurcations de points fixes elliptiques. I. Courbes invariantes,, Publications Mathématiques de l'I.H.E.S., 61 (1985), 67. Google Scholar

[16]

M. C. Ciocci, "Bifurcation of Periodic Orbits and Persistence of Quasi Periodic Orbits in Families of Reversible Systems,", Ph.D. thesis, (2003). Google Scholar

[17]

H. H. de Jong, "Quasi-periodic Breathers in Systems of Weakly Coupled Pendulums: Applications of KAM Theory,", Ph.D. thesis, (1999). Google Scholar

[18]

G. Gentile and M. Procesi, Periodic solutions for a class of nonlinear partial differential equations in higher dimension,, Communications of Mathematical Physics, 289 (2009), 863. doi: 10.1007/s00220-009-0817-1. Google Scholar

[19]

A. González-Enríquez, À. Haro and R. de la Llave, Translated torus theory with parameters and applications,, In preparation., (). Google Scholar

[20]

M. Golubitsky and V. Guillemin, "Stable Mappings and Their Singularities,", Graduate Texts in Mathematics, 14 (1973). Google Scholar

[21]

H. Hanßmann, The quasi-periodic centre-saddle bifurcation,, Journal of Differential Equations, 142 (1998), 305. doi: 10.1006/jdeq.1997.3365. Google Scholar

[22]

H. Hanßmann, "Local and Semi-local Bifurcations in Hamiltonian Dynamical Systems: Results and Examples,", Lecture Notes in Mathematics, 1893 (2007). Google Scholar

[23]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1952). Google Scholar

[24]

J. Hoo, "Quasi-periodic Bifurcations in a Strong Resonance: Combination Tones in Gyroscopic Stabilisation,", Ph.D. thesis, (2005). Google Scholar

[25]

L. Hörmander, "An Introduction to Complex Analysis in Several Variables,", North-Holland, (1990). Google Scholar

[26]

L. Hörmander, "The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis,", Springer, (1990). Google Scholar

[27]

X. Li and R. de la Llave, Convergence of differentiable functions on closed sets and remarks on the proofs of the "converse approximation lemmas'',, Preprint 2009., (2009). Google Scholar

[28]

J. Moser, Convergent series expansions for quasi-periodic motions,, Mathematische Annalen, 169 (1967), 136. doi: 10.1007/BF01399536. Google Scholar

[29]

V. Poénaru, "Analyse Différentielle,", Lecture Notes in Mathematics, 371 (1974). Google Scholar

[30]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. I: Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 223. doi: 10.1007/PL00001004. Google Scholar

[31]

G. Popov, Invariant tori, effective stability, and quasimodes with exponentially small error terms. II: Quantum Birkhoff normal forms,, Annales de l'Institut Henri Poincaré, 1 (2000), 249. Google Scholar

[32]

G. Popov, KAM theorem for Gevrey Hamiltonians,, Ergodic Theory and Dynamical Systems, 24 (2004), 1753. doi: 10.1017/S0143385704000458. Google Scholar

[33]

J. Pöschel, Integrability of Hamiltonian systems on Cantor sets,, Communications of Pure and Applied Mathematics, 35 (1982), 653. doi: 10.1002/cpa.3160350504. Google Scholar

[34]

A. S. Pyartli, Diophantine approximations on submanifolds of Euclidean space,, Functional Analysis and Applications, 3 (1969), 303. doi: 10.1007/BF01076316. Google Scholar

[35]

R. Roussarie and F. O. O. Wagener, A study of the Bogdanov-Takens bifurcation,, Resenhas IME-USP, 2 (1995), 1. Google Scholar

[36]

H. Rüssmann, Kleine Nenner I: Über invariante Kurven differenzierbarer Abbildungen eines Kreisringes,, Nachr. Ak. Wiss. Gött., 5 (1970), 67. Google Scholar

[37]

H. Rüssmann, On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus,, Dynamical Systems, 38 (1975), 598. Google Scholar

[38]

M. B. Sevryuk, KAM tori: Persistence and smoothness,, Nonlinearity, 21 (2008). doi: 10.1088/0951-7715/21/10/T01. Google Scholar

[39]

E. M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton Univ. Press, (1970). Google Scholar

[40]

F. Takens, Forced oscillations and bifurcations,, Communications of the Mathematical Institute 3, (1974), 1. Google Scholar

[41]

F. O. O. Wagener, A note on Gevrey regular KAM theory and the inverse approximation lemma,, Dynamical Systems, 18 (2003), 159. doi: 10.1080/1468936031000117857. Google Scholar

[42]

F. O. O. Wagener, On the quasi-periodic $d$-fold degenerate bifurcation,, Journal of Differential Equations, 216 (2005), 261. doi: 10.1016/j.jde.2005.06.013. Google Scholar

[43]

J. Xu and J. You, Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Differential Equations, 235 (2007), 609. doi: 10.1016/j.jde.2006.12.001. Google Scholar

[44]

E. Zehnder, Generalized implicit function theorems with applications to some small divisor problems I,, Communications in Pure and Applied Mathematics, 28 (1975), 91. Google Scholar

[45]

D. Zhang and J. Xu, Gevrey-smoothness of elliptic lower-dimensional invariant tori in Hamiltonian systems under Rüssmann's non-degeneracy condition,, Journal of Mathematical Analysis and Applications, 323 (2006), 293. doi: 10.1016/j.jmaa.2005.10.029. Google Scholar

[46]

D. Zhang and J. Xu, On elliptic lower dimensional tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Discrete and Continuous Dynamical Systems, 16 (2006), 635. doi: 10.3934/dcds.2006.16.635. Google Scholar

[47]

D. Zhang and J. Xu, Invariant tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Nonlinear Analysis, 67 (2007), 2240. doi: 10.1016/j.na.2006.09.012. Google Scholar

[48]

D. Zhang and J. Xu, Invariant hyperbolic tori for Gevrey-smooth Hamiltonian systems under Rüssmann's non-degeneracy condition,, Acta Mathematica Sinica-English Series, 24 (2008), 1625. doi: 10.1007/s10114-008-6180-x. Google Scholar

[1]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[2]

Àlex Haro, Rafael de la Llave. A parameterization method for the computation of invariant tori and their whiskers in quasi-periodic maps: Numerical algorithms. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1261-1300. doi: 10.3934/dcdsb.2006.6.1261

[3]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

[4]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[5]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[6]

Qihuai Liu, Dingbian Qian, Zhiguo Wang. Quasi-periodic solutions of the Lotka-Volterra competition systems with quasi-periodic perturbations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (5) : 1537-1550. doi: 10.3934/dcdsb.2012.17.1537

[7]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[8]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[9]

Alessandro Fonda, Antonio J. Ureña. Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 169-192. doi: 10.3934/dcds.2011.29.169

[10]

Xavier Blanc, Claude Le Bris. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Networks & Heterogeneous Media, 2010, 5 (1) : 1-29. doi: 10.3934/nhm.2010.5.1

[11]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[12]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[13]

Xiaoping Yuan. Quasi-periodic solutions of nonlinear wave equations with a prescribed potential. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 615-634. doi: 10.3934/dcds.2006.16.615

[14]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[15]

Xuanji Hou, Lei Jiao. On local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3125-3152. doi: 10.3934/dcds.2016.36.3125

[16]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[17]

Xuanji Hou, Jiangong You. Local rigidity of reducibility of analytic quasi-periodic cocycles on $U(n)$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 441-454. doi: 10.3934/dcds.2009.24.441

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2019171

[19]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[20]

Ernest Fontich, Rafael de la Llave, Yannick Sire. A method for the study of whiskered quasi-periodic and almost-periodic solutions in finite and infinite dimensional Hamiltonian systems. Electronic Research Announcements, 2009, 16: 9-22. doi: 10.3934/era.2009.16.9

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]