February  2011, 4(1): 1-13. doi: 10.3934/dcdss.2011.4.1

The periodic patch model for population dynamics with fractional diffusion

1. 

Ecole des Hautes Etudes en Sciences Sociales, CAMS, 54, bd Raspail F-75270 Paris, France

2. 

Institut de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4, France

3. 

Università degli Studi di Padova, Dipartimento di Matematica Pura ed Applicata, Via Trieste, 63 - 35121 Padova, Italy

Received  May 2010 Published  October 2010

Fractional diffusions arise in the study of models from population dynamics. In this paper, we derive a class of integro-differential reaction-diffusion equations from simple principles. We then prove an approximation result for the first eigenvalue of linear integro-differential operators of the fractional diffusion type, and we study from that the dynamics of a population in a fragmented environment with fractional diffusion.
Citation: Henri Berestycki, Jean-Michel Roquejoffre, Luca Rossi. The periodic patch model for population dynamics with fractional diffusion. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 1-13. doi: 10.3934/dcdss.2011.4.1
References:
[1]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal, 40 (1981), 1.  doi: doi:10.1016/0022-1236(81)90069-0.  Google Scholar

[2]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451.  doi: doi:10.1007/s00220-004-1201-9.  Google Scholar

[3]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol, 51 (2005), 75.  doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[4]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl, 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[5]

J.-M. Bony, P. Courrège and P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,, Ann. Inst. Fourier, 18 (1968), 369.   Google Scholar

[6]

X. Cabré and J.-M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361.   Google Scholar

[7]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Royal Soc. Edinburgh, 132 (2002), 567.  doi: doi:10.1017/S0308210500001785.  Google Scholar

[8]

P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow,, Annals of Math., 168 (2008), 643.  doi: doi:10.4007/annals.2008.168.643.  Google Scholar

[9]

J. Coville, PhD thesis,, PhD thesis, (2003).   Google Scholar

[10]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Springer-Verlag, (1979).   Google Scholar

[11]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.   Google Scholar

[12]

J. D. Murray, "Mathematical Biology," 2nd edition,, Biomathematics, 19 (1993).   Google Scholar

show all references

References:
[1]

H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques,, J. Funct. Anal, 40 (1981), 1.  doi: doi:10.1016/0022-1236(81)90069-0.  Google Scholar

[2]

H. Berestycki, F. Hamel and N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena,, Comm. Math. Phys., 253 (2005), 451.  doi: doi:10.1007/s00220-004-1201-9.  Google Scholar

[3]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. I. Species persistence,, J. Math. Biol, 51 (2005), 75.  doi: doi:10.1007/s00285-004-0313-3.  Google Scholar

[4]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. II. Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl, 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[5]

J.-M. Bony, P. Courrège and P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum,, Ann. Inst. Fourier, 18 (1968), 369.   Google Scholar

[6]

X. Cabré and J.-M. Roquejoffre, Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire,, C. R. Math. Acad. Sci. Paris, 347 (2009), 1361.   Google Scholar

[7]

Y. Capdeboscq, Homogenization of a neutronic critical diffusion problem with drift,, Proc. Royal Soc. Edinburgh, 132 (2002), 567.  doi: doi:10.1017/S0308210500001785.  Google Scholar

[8]

P. Constantin, A. Kiselev, L. Ryzhik and A. Zlatos, Diffusion and mixing in fluid flow,, Annals of Math., 168 (2008), 643.  doi: doi:10.4007/annals.2008.168.643.  Google Scholar

[9]

J. Coville, PhD thesis,, PhD thesis, (2003).   Google Scholar

[10]

P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems,", Springer-Verlag, (1979).   Google Scholar

[11]

A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov, Etude de l'équation de diffusion avec accroissement de la quantité de matière, et son application à un problème biologique,, Bjul. Moskowskogo Gos. Univ., 17 (1937), 1.   Google Scholar

[12]

J. D. Murray, "Mathematical Biology," 2nd edition,, Biomathematics, 19 (1993).   Google Scholar

[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[3]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[4]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[7]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[12]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[13]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[18]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[19]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[20]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (19)

[Back to Top]