October  2011, 4(5): 1007-1017. doi: 10.3934/dcdss.2011.4.1007

Existence of solitary waves in nonlinear equations of Schrödinger type

1. 

Departamento de Matemáticas, E.T.S.I Industriales & Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Avda. de Camilo José Cela, 3 Universidad de Castilla-La Mancha, 13071 Ciudad Real

2. 

Departamento de Matemáticas, E. T. S. de Ingenieros Industriales, and Instituto de Matemática Aplicada a la Ciencia y la Ingeniería (IMACI), Universidad de Castilla-La Mancha 13071 Ciudad Real, Spain

Received  July 2009 Revised  October 2009 Published  December 2010

In this work we study the existence of solitary waves in nonlinear equations of Schrödinger type. We prove the existence of the positive solution and using the bifurcation theory show that the norm of the given solution tends to zero as the coefficient corresponding to the linear term vanishes.
Citation: Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007
References:
[1]

F. Kh. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates,, Phys. Rev. A, 63 (2001).  doi: doi:10.1103/PhysRevA.63.043604.  Google Scholar

[2]

A. Ambrosetti, V Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity,, J. Eur. Math. Soc., 7 (2005), 117.  doi: doi:10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$,", Progress in Mathematics, (2006).   Google Scholar

[4]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems,", Cambridge Studies in Adv. Math., 104 (2007).   Google Scholar

[5]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: doi:10.1016/0022-1236(73)90051-7.  Google Scholar

[6]

A. Bahri and P. L. Lions, On the existence of positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. Henri Poincaré, 14 (1997), 365.   Google Scholar

[7]

I. V. Barashenkov and V. G. Makhankov, Soliton-like "bubbles" in the system of interacting bosons,, Phys. Lett. A, 128 (1988), 52.  doi: doi:10.1016/0375-9601(88)91042-0.  Google Scholar

[8]

T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, Comm. Part. Diff. Eq., 20 (1995), 1725.  doi: doi:10.1080/03605309508821149.  Google Scholar

[9]

J. Belmonte-Beitia, On the existence of bright solitons in cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity,, Mathematical Problems in Engineering, 2008 (2008).  doi: doi:10.1155/2008/935390.  Google Scholar

[10]

J. Belmonte-Beitia, Symmetric and asymmetric bound states for the nonlinear Schrödinger equation with inhomogeneous nonlinearity,, J. Phys. A: Math. Theor., 42 (2009).  doi: doi:10.1088/1751-8113/42/3/035208.  Google Scholar

[11]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and V. V. Konotop, Localized nonlinear waves in systems with time and space modulated nonlinearities,, Phys. Rev. Lett., 100 (2008).  doi: doi:10.1103/PhysRevLett.100.164102.  Google Scholar

[12]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,, Phys. Rev. Lett., 98 (2007).  doi: doi:10.1103/PhysRevLett.98.064102.  Google Scholar

[13]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations,, Discrete and Continuous Dynamical Systems - Series B, 9 (2008), 221.   Google Scholar

[14]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.   Google Scholar

[15]

G. Boudeps, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,, Opt. Commun., 219 (2003), 427.  doi: doi:10.1016/S0030-4018(03)01341-5.  Google Scholar

[16]

M. Centurion, M. A. Porter, P. G. Kevrekidis and D. Psaltis, Nonlinearity management in optics: Experiment, theory and simulation,, Phys. Rev. Lett., 97 (2006).  doi: doi:10.1103/PhysRevLett.97.033903.  Google Scholar

[17]

C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H.-C. Nägeri and R. Grim, Observation of Feshbach-like resonances in collisions between ultracold molecules,, Phys. Rev. Lett., 94 (2005).  doi: doi:10.1103/PhysRevLett.94.123201.  Google Scholar

[18]

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman, Stable 85Rb Bose-Einstein condensates with widely tunable interactions},, Phys. Rev. Lett., 85 (2000).  doi: doi:10.1103/PhysRevLett.85.1795.  Google Scholar

[19]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: doi:10.1103/RevModPhys.71.463.  Google Scholar

[20]

A. S. Davydov, "Solitons in Molecular Systems,", Translated from the Russian by Eugene S. Kryachko. Mathematics and its Applications (Soviet Series), (1985).   Google Scholar

[21]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press, (1982).   Google Scholar

[22]

A. Hasegawa, "Optical solitons in Fibers,", Springer-Verlag, (1989).   Google Scholar

[23]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Nonlinearity management in higher dimensions,, J. Phys. A: Math. Gen., 39 (2006), 479.  doi: doi:10.1088/0305-4470/39/3/002.  Google Scholar

[24]

Y. Kivshar and G. P. Agrawal, "Optical Solitons: From Fibers to Photonic Crystals,", Academic Press, (2003).   Google Scholar

[25]

P. L. Lions, The concentration-compactness principle in the calculus of varitions, the locally compact case. Part I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[26]

B. A. Malomed, "Soliton Management in Periodic Systems,", Springer, (2006).   Google Scholar

[27]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals,, Milan J. Math., 73 (2005), 259.  doi: doi:10.1007/s00032-005-0047-8.  Google Scholar

[28]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Averaging for solitons with nonlinearity management,, Phys. Rev. Lett., 91 (2003).  doi: doi:10.1103/PhysRevLett.91.240201.  Google Scholar

[29]

C. Sulem and P. Sulem, "The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse,", Springer, (2000).   Google Scholar

[30]

P. Torres, Guided waves in an multi-layered optical structure,, Nonlinearity, 19 (2006), 2103.  doi: doi:10.1088/0951-7715/19/9/006.  Google Scholar

[31]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996).   Google Scholar

[32]

C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth- order optical nonlinearities in a new stilbazolium derivative,, J. Opt. Soc. Am. B, 19 (2002), 369.  doi: doi:10.1364/JOSAB.19.000369.  Google Scholar

[33]

C. T. Zhou and X. T. He, Stochastic diffusion of electrons in evolution Langmuir fields,, Phys. Scr., 50 (1994).  doi: doi:10.1088/0031-8949/50/4/015.  Google Scholar

show all references

References:
[1]

F. Kh. Abdullaev, A. Gammal, L. Tomio and T. Frederico, Stability of trapped Bose-Einstein condensates,, Phys. Rev. A, 63 (2001).  doi: doi:10.1103/PhysRevA.63.043604.  Google Scholar

[2]

A. Ambrosetti, V Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity,, J. Eur. Math. Soc., 7 (2005), 117.  doi: doi:10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and A. Malchiodi, "Perturbation Methods and Semilinear Elliptic Problems on $R^n$,", Progress in Mathematics, (2006).   Google Scholar

[4]

A. Ambrosetti and A. Malchiodi, "Nonlinear Analysis and Semilinear Elliptic Problems,", Cambridge Studies in Adv. Math., 104 (2007).   Google Scholar

[5]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.  doi: doi:10.1016/0022-1236(73)90051-7.  Google Scholar

[6]

A. Bahri and P. L. Lions, On the existence of positive solution of semilinear elliptic equations in unbounded domains,, Ann. Inst. Henri Poincaré, 14 (1997), 365.   Google Scholar

[7]

I. V. Barashenkov and V. G. Makhankov, Soliton-like "bubbles" in the system of interacting bosons,, Phys. Lett. A, 128 (1988), 52.  doi: doi:10.1016/0375-9601(88)91042-0.  Google Scholar

[8]

T. Bartsch and Z.-Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbbR^N$,, Comm. Part. Diff. Eq., 20 (1995), 1725.  doi: doi:10.1080/03605309508821149.  Google Scholar

[9]

J. Belmonte-Beitia, On the existence of bright solitons in cubic-quintic nonlinear Schrödinger equation with inhomogeneous nonlinearity,, Mathematical Problems in Engineering, 2008 (2008).  doi: doi:10.1155/2008/935390.  Google Scholar

[10]

J. Belmonte-Beitia, Symmetric and asymmetric bound states for the nonlinear Schrödinger equation with inhomogeneous nonlinearity,, J. Phys. A: Math. Theor., 42 (2009).  doi: doi:10.1088/1751-8113/42/3/035208.  Google Scholar

[11]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and V. V. Konotop, Localized nonlinear waves in systems with time and space modulated nonlinearities,, Phys. Rev. Lett., 100 (2008).  doi: doi:10.1103/PhysRevLett.100.164102.  Google Scholar

[12]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities,, Phys. Rev. Lett., 98 (2007).  doi: doi:10.1103/PhysRevLett.98.064102.  Google Scholar

[13]

J. Belmonte-Beitia, V. M. Pérez-García, V. Vekslerchik and P. J. Torres, Lie symmetries, qualitative analysis and exact solutions of nonlinear Schrödinger equations,, Discrete and Continuous Dynamical Systems - Series B, 9 (2008), 221.   Google Scholar

[14]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I and II,, Arch. Rat. Mech. Anal., 82 (1983), 313.   Google Scholar

[15]

G. Boudeps, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses,, Opt. Commun., 219 (2003), 427.  doi: doi:10.1016/S0030-4018(03)01341-5.  Google Scholar

[16]

M. Centurion, M. A. Porter, P. G. Kevrekidis and D. Psaltis, Nonlinearity management in optics: Experiment, theory and simulation,, Phys. Rev. Lett., 97 (2006).  doi: doi:10.1103/PhysRevLett.97.033903.  Google Scholar

[17]

C. Chin, T. Kraemer, M. Mark, J. Herbig, P. Waldburger, H.-C. Nägeri and R. Grim, Observation of Feshbach-like resonances in collisions between ultracold molecules,, Phys. Rev. Lett., 94 (2005).  doi: doi:10.1103/PhysRevLett.94.123201.  Google Scholar

[18]

S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman, Stable 85Rb Bose-Einstein condensates with widely tunable interactions},, Phys. Rev. Lett., 85 (2000).  doi: doi:10.1103/PhysRevLett.85.1795.  Google Scholar

[19]

F. Dalfovo, S. Giorgini, L. P. Pitaevskii and S. Stringari, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999), 463.  doi: doi:10.1103/RevModPhys.71.463.  Google Scholar

[20]

A. S. Davydov, "Solitons in Molecular Systems,", Translated from the Russian by Eugene S. Kryachko. Mathematics and its Applications (Soviet Series), (1985).   Google Scholar

[21]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press, (1982).   Google Scholar

[22]

A. Hasegawa, "Optical solitons in Fibers,", Springer-Verlag, (1989).   Google Scholar

[23]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Nonlinearity management in higher dimensions,, J. Phys. A: Math. Gen., 39 (2006), 479.  doi: doi:10.1088/0305-4470/39/3/002.  Google Scholar

[24]

Y. Kivshar and G. P. Agrawal, "Optical Solitons: From Fibers to Photonic Crystals,", Academic Press, (2003).   Google Scholar

[25]

P. L. Lions, The concentration-compactness principle in the calculus of varitions, the locally compact case. Part I,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1 (1984), 109.   Google Scholar

[26]

B. A. Malomed, "Soliton Management in Periodic Systems,", Springer, (2006).   Google Scholar

[27]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals,, Milan J. Math., 73 (2005), 259.  doi: doi:10.1007/s00032-005-0047-8.  Google Scholar

[28]

D. E. Pelinovsky, P. G. Kevrekidis and D. J. Frantzeskakis, Averaging for solitons with nonlinearity management,, Phys. Rev. Lett., 91 (2003).  doi: doi:10.1103/PhysRevLett.91.240201.  Google Scholar

[29]

C. Sulem and P. Sulem, "The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse,", Springer, (2000).   Google Scholar

[30]

P. Torres, Guided waves in an multi-layered optical structure,, Nonlinearity, 19 (2006), 2103.  doi: doi:10.1088/0951-7715/19/9/006.  Google Scholar

[31]

M. Willem, "Minimax Theorems,", Progress in Nonlinear Differential Equations and Their Applications, 24 (1996).   Google Scholar

[32]

C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth- order optical nonlinearities in a new stilbazolium derivative,, J. Opt. Soc. Am. B, 19 (2002), 369.  doi: doi:10.1364/JOSAB.19.000369.  Google Scholar

[33]

C. T. Zhou and X. T. He, Stochastic diffusion of electrons in evolution Langmuir fields,, Phys. Scr., 50 (1994).  doi: doi:10.1088/0031-8949/50/4/015.  Google Scholar

[1]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[12]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[15]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[16]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[17]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[18]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[19]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[20]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]