February  2011, 4(1): 101-123. doi: 10.3934/dcdss.2011.4.101

Heteroclinic connections for multidimensional bistable reaction-diffusion equations

1. 

Aix-Marseille Université & Institut Universitaire de France, LATP, Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France

2. 

Institut de Mathématiques, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 4

Received  November 2009 Revised  January 2010 Published  October 2010

In this paper, non-planar two-dimensional travelling fronts connecting an unstable one-dimensional periodic limiting state to a constant stable state are constructed for some reaction-diffusion equations with bistable nonlinearities. The minimal speeds are characterized in terms of the spatial period of the unstable limiting state. The limits of the minimal speeds and of the travelling fronts as the period converges to a critical minimal value or to infinity are analyzed. The fronts converge to flat fronts or to some curved fronts connecting an unstable ground state to a constant stable state.
Citation: François Hamel, Jean-Michel Roquejoffre. Heteroclinic connections for multidimensional bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 101-123. doi: 10.3934/dcdss.2011.4.101
References:
[1]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.   Google Scholar

[2]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, in, (2007), 101.   Google Scholar

[3]

H. Berestycki and F. Hamel, "Reaction-Diffusion Equations and Propagation Phenomena,", Applied Mathematical Sciences, ().   Google Scholar

[4]

H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375.  doi: doi:10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré, 9 (1992), 497.   Google Scholar

[7]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation,, J. Diff. Equations, 236 (2007), 237.  doi: doi:10.1016/j.jde.2007.01.021.  Google Scholar

[8]

X. Chen, J.-S. Guo, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics,, Ann. Inst. H. Poincaré, 24 (2007), 369.  doi: doi:10.1016/j.anihpc.2006.03.012.  Google Scholar

[9]

M. El Smaily, Min-max formulæ for the speeds of pulsating travelling fronts in periodic excitable media,, Ann. Mat. Pura Appl., 189 (2010), 47.  doi: doi:10.1007/s10231-009-0100-2.  Google Scholar

[10]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[11]

P. C. Fife and J. B. McLeod, The approach of solutions of non-linear diffusion equations to traveling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: doi:10.1007/BF00250432.  Google Scholar

[12]

F. Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles,, Ann. Fac. Sci. Toulouse, 8 (1999), 259.   Google Scholar

[13]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets,, Comm. Part. Diff. Equations, 25 (2000), 769.  doi: doi:10.1080/03605300008821532.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions,, Ann. Scient. Ecole Norm. Sup., 37 (2004), 469.   Google Scholar

[15]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Disc. Cont. Dyn. Systems, 13 (2005), 1069.  doi: doi:10.3934/dcds.2005.13.1069.  Google Scholar

[16]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets,, Disc. Cont. Dyn. Systems, 14 (2006), 75.   Google Scholar

[17]

F. Hamel and N. Nadirashvili, Travelling waves and entire solutions of the Fisher-KPP equation in $\R^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91.  doi: doi:10.1007/PL00004238.  Google Scholar

[18]

M. Haragus, A. Scheel, Corner defects in almost planar interface propagation,, Ann. Inst. H. Poincaré, 23 (2006), 283.  doi: doi:10.1016/j.anihpc.2005.03.003.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. État Moscou, 1 (1937), 1.   Google Scholar

[20]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1.  doi: doi:10.1137/S0036141093246105.  Google Scholar

[21]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space,, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 567.   Google Scholar

[22]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations,, J. Diff. Equations, 213 (2005), 204.  doi: doi:10.1016/j.jde.2004.06.011.  Google Scholar

[23]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations,, Dis. Cont. Dyn. Systems, 15 (2006), 819.  doi: doi:10.3934/dcds.2006.15.819.  Google Scholar

[24]

R. Pinsky, Second order elliptic operators with periodic coefficients: Criticality theory, perturbations, and positive harmonic functions,, J. Func. Anal., 129 (1995), 80.  doi: doi:10.1006/jfan.1995.1043.  Google Scholar

[25]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders,, Ann. Inst. H. Poincaré, 14 (1997), 499.  doi: doi:10.1016/S0294-1449(97)80137-0.  Google Scholar

[26]

J.-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations,, Ann. Mat. Pura Appl., 188 (2009), 207.  doi: doi:10.1007/s10231-008-0072-7.  Google Scholar

[27]

A. Scheel, Coarsening fronts,, Arch. Ration. Mech. Anal., 181 (2006), 505.  doi: doi:10.1007/s00205-006-0422-9.  Google Scholar

[28]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equation,, SIAM J. Math. Anal., 39 (2007), 319.  doi: doi:10.1137/060661788.  Google Scholar

[29]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations,, J. Diff. Equations, 246 (2009), 2103.  doi: doi:10.1016/j.jde.2008.06.037.  Google Scholar

[30]

J. M. Vega, On the uniqueness of multidimensional travelling fronts of some semilinear equations,, J. Math. Anal. Appl., 177 (1993), 481.  doi: doi:10.1006/jmaa.1993.1271.  Google Scholar

[31]

J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains,, Comm. Part. Diff. Equations, 18 (1993), 505.  doi: doi:10.1080/03605309308820939.  Google Scholar

[32]

J. M. Vega, Multidimensional travelling fronts in a model from combustion theory and related problems,, Diff. Int. Equations, 6 (1993), 131.   Google Scholar

[33]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: doi:10.1007/s00285-002-0169-3.  Google Scholar

show all references

References:
[1]

H. Berestycki and F. Hamel, Front propagation in periodic excitable media,, Comm. Pure Appl. Math., 55 (2002), 949.   Google Scholar

[2]

H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations,, in, (2007), 101.   Google Scholar

[3]

H. Berestycki and F. Hamel, "Reaction-Diffusion Equations and Propagation Phenomena,", Applied Mathematical Sciences, ().   Google Scholar

[4]

H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations,, Duke Math. J., 103 (2000), 375.  doi: doi:10.1215/S0012-7094-00-10331-6.  Google Scholar

[5]

H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model: II - Biological invasions and pulsating travelling fronts,, J. Math. Pures Appl., 84 (2005), 1101.  doi: doi:10.1016/j.matpur.2004.10.006.  Google Scholar

[6]

H. Berestycki and L. Nirenberg, Travelling fronts in cylinders,, Ann. Inst. H. Poincaré, 9 (1992), 497.   Google Scholar

[7]

G. Chapuisat, Existence and nonexistence of curved front solution of a biological equation,, J. Diff. Equations, 236 (2007), 237.  doi: doi:10.1016/j.jde.2007.01.021.  Google Scholar

[8]

X. Chen, J.-S. Guo, F. Hamel, H. Ninomiya and J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics,, Ann. Inst. H. Poincaré, 24 (2007), 369.  doi: doi:10.1016/j.anihpc.2006.03.012.  Google Scholar

[9]

M. El Smaily, Min-max formulæ for the speeds of pulsating travelling fronts in periodic excitable media,, Ann. Mat. Pura Appl., 189 (2010), 47.  doi: doi:10.1007/s10231-009-0100-2.  Google Scholar

[10]

P. C. Fife, "Dynamics of Internal Layers and Diffusive Interfaces,", CBMS-NSF Regional Conference Series in Applied Mathematics, 53 (1988).   Google Scholar

[11]

P. C. Fife and J. B. McLeod, The approach of solutions of non-linear diffusion equations to traveling front solutions,, Arch. Ration. Mech. Anal., 65 (1977), 335.  doi: doi:10.1007/BF00250432.  Google Scholar

[12]

F. Hamel, Formules min-max pour les vitesses d'ondes progressives multidimensionnelles,, Ann. Fac. Sci. Toulouse, 8 (1999), 259.   Google Scholar

[13]

F. Hamel and R. Monneau, Solutions of semilinear elliptic equations in $R^N$ with conical-shaped level sets,, Comm. Part. Diff. Equations, 25 (2000), 769.  doi: doi:10.1080/03605300008821532.  Google Scholar

[14]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Stability of travelling waves in a model for conical flames in two space dimensions,, Ann. Scient. Ecole Norm. Sup., 37 (2004), 469.   Google Scholar

[15]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts,, Disc. Cont. Dyn. Systems, 13 (2005), 1069.  doi: doi:10.3934/dcds.2005.13.1069.  Google Scholar

[16]

F. Hamel, R. Monneau and J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets,, Disc. Cont. Dyn. Systems, 14 (2006), 75.   Google Scholar

[17]

F. Hamel and N. Nadirashvili, Travelling waves and entire solutions of the Fisher-KPP equation in $\R^N$,, Arch. Ration. Mech. Anal., 157 (2001), 91.  doi: doi:10.1007/PL00004238.  Google Scholar

[18]

M. Haragus, A. Scheel, Corner defects in almost planar interface propagation,, Ann. Inst. H. Poincaré, 23 (2006), 283.  doi: doi:10.1016/j.anihpc.2005.03.003.  Google Scholar

[19]

A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique,, Bull. Univ. État Moscou, 1 (1937), 1.   Google Scholar

[20]

J.-F. Mallordy and J.-M. Roquejoffre, A parabolic equation of the KPP type in higher dimensions,, SIAM J. Math. Anal., 26 (1995), 1.  doi: doi:10.1137/S0036141093246105.  Google Scholar

[21]

Y. Morita and H. Ninomiya, Monostable-type traveling waves of bistable reaction-diffusion equations in the multi-dimensional space,, Bull. Inst. Math. Acad. Sin. (N.S.), 3 (2008), 567.   Google Scholar

[22]

H. Ninomiya and M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations,, J. Diff. Equations, 213 (2005), 204.  doi: doi:10.1016/j.jde.2004.06.011.  Google Scholar

[23]

H. Ninomiya and M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations,, Dis. Cont. Dyn. Systems, 15 (2006), 819.  doi: doi:10.3934/dcds.2006.15.819.  Google Scholar

[24]

R. Pinsky, Second order elliptic operators with periodic coefficients: Criticality theory, perturbations, and positive harmonic functions,, J. Func. Anal., 129 (1995), 80.  doi: doi:10.1006/jfan.1995.1043.  Google Scholar

[25]

J.-M. Roquejoffre, Eventual monotonicity and convergence to travelling fronts for the solutions of parabolic equations in cylinders,, Ann. Inst. H. Poincaré, 14 (1997), 499.  doi: doi:10.1016/S0294-1449(97)80137-0.  Google Scholar

[26]

J.-M. Roquejoffre and V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations,, Ann. Mat. Pura Appl., 188 (2009), 207.  doi: doi:10.1007/s10231-008-0072-7.  Google Scholar

[27]

A. Scheel, Coarsening fronts,, Arch. Ration. Mech. Anal., 181 (2006), 505.  doi: doi:10.1007/s00205-006-0422-9.  Google Scholar

[28]

M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equation,, SIAM J. Math. Anal., 39 (2007), 319.  doi: doi:10.1137/060661788.  Google Scholar

[29]

M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations,, J. Diff. Equations, 246 (2009), 2103.  doi: doi:10.1016/j.jde.2008.06.037.  Google Scholar

[30]

J. M. Vega, On the uniqueness of multidimensional travelling fronts of some semilinear equations,, J. Math. Anal. Appl., 177 (1993), 481.  doi: doi:10.1006/jmaa.1993.1271.  Google Scholar

[31]

J. M. Vega, Travelling wavefronts of reaction-diffusion equations in cylindrical domains,, Comm. Part. Diff. Equations, 18 (1993), 505.  doi: doi:10.1080/03605309308820939.  Google Scholar

[32]

J. M. Vega, Multidimensional travelling fronts in a model from combustion theory and related problems,, Diff. Int. Equations, 6 (1993), 131.   Google Scholar

[33]

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat,, J. Math. Biol., 45 (2002), 511.  doi: doi:10.1007/s00285-002-0169-3.  Google Scholar

[1]

Shi-Liang Wu, Yu-Juan Sun, San-Yang Liu. Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 921-946. doi: 10.3934/dcds.2013.33.921

[2]

Masaharu Taniguchi. Multi-dimensional traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 1011-1046. doi: 10.3934/dcds.2012.32.1011

[3]

Zhen-Hui Bu, Zhi-Cheng Wang. Curved fronts of monostable reaction-advection-diffusion equations in space-time periodic media. Communications on Pure & Applied Analysis, 2016, 15 (1) : 139-160. doi: 10.3934/cpaa.2016.15.139

[4]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

[5]

Michio Urano, Kimie Nakashima, Yoshio Yamada. Transition layers and spikes for a reaction-diffusion equation with bistable nonlinearity. Conference Publications, 2005, 2005 (Special) : 868-877. doi: 10.3934/proc.2005.2005.868

[6]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020033

[7]

Wei-Jie Sheng, Wan-Tong Li. Multidimensional stability of time-periodic planar traveling fronts in bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2681-2704. doi: 10.3934/dcds.2017115

[8]

Zhi-Cheng Wang. Traveling curved fronts in monotone bistable systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2339-2374. doi: 10.3934/dcds.2012.32.2339

[9]

Yuanwei Qi. Travelling fronts of reaction diffusion systems modeling auto-catalysis. Conference Publications, 2009, 2009 (Special) : 622-629. doi: 10.3934/proc.2009.2009.622

[10]

Antoine Mellet, Jean-Michel Roquejoffre, Yannick Sire. Generalized fronts for one-dimensional reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 303-312. doi: 10.3934/dcds.2010.26.303

[11]

Masaharu Taniguchi. Traveling fronts in perturbed multistable reaction-diffusion equations. Conference Publications, 2011, 2011 (Special) : 1368-1377. doi: 10.3934/proc.2011.2011.1368

[12]

Henri Berestycki, Guillemette Chapuisat. Traveling fronts guided by the environment for reaction-diffusion equations. Networks & Heterogeneous Media, 2013, 8 (1) : 79-114. doi: 10.3934/nhm.2013.8.79

[13]

Shi-Liang Wu, Wan-Tong Li, San-Yang Liu. Exponential stability of traveling fronts in monostable reaction-advection-diffusion equations with non-local delay. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 347-366. doi: 10.3934/dcdsb.2012.17.347

[14]

Elena Trofimchuk, Manuel Pinto, Sergei Trofimchuk. Pushed traveling fronts in monostable equations with monotone delayed reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 2169-2187. doi: 10.3934/dcds.2013.33.2169

[15]

Henri Berestycki, Nancy Rodríguez. A non-local bistable reaction-diffusion equation with a gap. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 685-723. doi: 10.3934/dcds.2017029

[16]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[17]

Zhi-Xian Yu, Rong Yuan. Traveling wave fronts in reaction-diffusion systems with spatio-temporal delay and applications. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 709-728. doi: 10.3934/dcdsb.2010.13.709

[18]

Maurizio Garrione, Marta Strani. Monotone wave fronts for $(p, q)$-Laplacian driven reaction-diffusion equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (1) : 91-103. doi: 10.3934/dcdss.2019006

[19]

Hiroshi Matsuzawa. On a solution with transition layers for a bistable reaction-diffusion equation with spatially heterogeneous environments. Conference Publications, 2009, 2009 (Special) : 516-525. doi: 10.3934/proc.2009.2009.516

[20]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]