\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Variational approximations of bifurcations of asymmetric solitons in cubic-quintic nonlinear Schrödinger lattices

Abstract Related Papers Cited by
  • Using a variational approximation we study discrete solitons of a nonlinear Schrödinger lattice with a cubic-quintic nonlinearity. Using an ansatz with six parameters we are able to approximate bifurcations of asymmetric solutions connecting site-centered and bond-centered solutions and resulting in the exchange of their stability. We show that the numerical and variational approximations are quite close for solitons of small powers.
    Mathematics Subject Classification: Primary: 35Q55, 37K60, 35B32; Secondary: 58E30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Beck, J. Knobloch, D. J. B. Lloyd, B. Sandstede and T. Wagenknecht, Snakes, ladders, and isolas of localised patterns, SIAM J. Math. Anal., 41 (2009), 936-972.doi: doi:10.1137/080713306.

    [2]

    G. Boudebs, S. Cherukulappurath, H. Leblond, J. Troles, F. Smektala and F. Sanchez, Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses, Opt. Commun., 219 (2003), 427-433.doi: doi:10.1016/S0030-4018(03)01341-5.

    [3]

    R. Carretero-Gonzáles, J. D. Talley, C. Chong and B. A. Malomed, Multistable solitons in the cubic-quintic discrete nonlinear Schrödinger equation, Physica D, 216 (2006), 77-89.doi: doi:10.1016/j.physd.2006.01.022.

    [4]

    C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices, Physica D, 238 (2009), 126-136.doi: doi:10.1016/j.physd.2008.10.002.

    [5]

    D. N. Christodoulides and R. I. Joseph, Discrete self-focusing in nonlinear arrays of coupled waveguides, Opt. Lett., 13 (1988), 794-796.doi: doi:10.1364/OL.13.000794.

    [6]

    J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis and B. A. Malomed, Discrete solitons in nonlinear Schrödinger lattices with a power-law nonlinearity, Physica D, 238 (2009), 67-76.doi: doi:10.1016/j.physd.2008.08.013.

    [7]

    J. Ch. Eilbeck and M. Johansson, The discrete nonlinear Schrödinger equations-20 years on, in "Localization and Energy Transfer in Nonlinear Systems" (eds. L. Vazquez, R. S. MacKay and M. P. Zorzano), World Scientific, (2003), 44-67.doi: doi:10.1142/9789812704627_0003.

    [8]

    L. Hadžievski, A. Maluckov, M. Stepić and D. Kip, Power controlled soliton stability and steering in lattices with saturable nonlinearity, Phys. Rev. Lett., 93 (2004), 033901.doi: doi:10.1103/PhysRevLett.93.033901.

    [9]

    R. A. Ganeev, M. Baba, M. Morita, A. I. Ryasnyansky, M. Suzuki, M. Turu and H. Kuroda, Fifth-order optical nonlinearity of pseudoisocyanine solution at 529 nm, J. Opt. A: Pure Appl. Opt., 6 (2004), 282-287.doi: doi:10.1088/1464-4258/6/2/021.

    [10]

    D. J. Kaup, Variational solutions for the discrete nonlinear Schrödinger equation, Math. Comput. Simulat., 69 (2005), 322-333.doi: doi:10.1016/j.matcom.2005.01.015.

    [11]

    P. G. Kevrekidis, K. Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: A survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2833-2900.doi: doi:10.1142/S0217979201007105.

    [12]

    D. J. B. Lloyd and B. Sandstede, Localized radial solutions of the Swift-Hohenberg equation, Nonlinearity, 22 (2009), 485-524.doi: doi:10.1088/0951-7715/22/2/013.

    [13]

    B. A. Malomed, Variational methods in nonlinear fiber optics and related fields, Prog. Opt., 43 (2002), 71-193.

    [14]

    B. A. Malomed and M. I. Weinstein, Soliton dynamics in the discrete nonlinear Schrödinger equation, Phys. Lett. A, 220 (1996), 91-96.doi: doi:10.1016/0375-9601(96)00516-6.

    [15]

    A. Maluckov, L. Hadžievski and B. A. Malomed, Dark solitons in dynamical lattices with the cubic-quintic nonlinearity, Phys. Rev. E, 76 (2007), 046605.doi: doi:10.1103/PhysRevE.76.046605.

    [16]

    A. Maluckov, L. Hadžievski and B. A. Malomed, Staggered and moving localized modes in dynamical lattices with the cubic-quintic nonlinearity, Phys. Rev. E, 77 (2008), 036604.doi: doi:10.1103/PhysRevE.77.036604.

    [17]

    M. Öster and M. Johansson, Stability, mobility and power currents in a two-dimensional model for waveguide arrays with nonlinear coupling, Physica D, 238 (2009), 88-99.doi: doi:10.1016/j.physd.2008.08.006.

    [18]

    M. Öster, M. Johansson and A. Eriksson, Enhanced mobility of strongly localized modes in waveguide arrays by inversion of stability, Phys. Rev. E, 67 (2003), 056606.doi: doi:10.1103/PhysRevE.67.056606.

    [19]

    I. E. Papacharalampous, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Soliton collisions in the discrete nonlinear Schrödinger equation, Phys. Rev., 68 (2003), 046604.

    [20]

    D. E. Pelinovsky, P. G. Kevrekidis and D. Frantzeskakis, Stability of discrete solitons in nonlinear Schrödinger lattices, Physica D, 212 (2005), 1-19.doi: doi:10.1016/j.physd.2005.07.021.

    [21]

    C. Taylor and J. H. P. Dawes, Snaking and isolas of localised states in bistable discrete lattices, Phys. Lett. A, 375 (2010), 4968-4976.doi: doi:10.1016/j.physleta.2010.10.010.

    [22]

    R. A. Vicencio and M. Johansson, Discrete soliton mobility in two-dimensional waveguide arrays with saturable nonlinearity, Phys. Rev. E, 73 (2006), 046602.doi: doi:10.1103/PhysRevE.73.046602.

    [23]

    C. Zhan, D. Zhang, D. Zhu, D. Wang, Y. Li, D. Li, Z. Lu, L. Zhao and Y. Nie, Third- and fifth-order optical nonlinearities in a new stilbazolium derivative, J. Opt. Soc. Am. B, 19 (2002), 369-375.doi: doi:10.1364/JOSAB.19.000369.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(64) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return