October  2011, 4(5): 1057-1067. doi: 10.3934/dcdss.2011.4.1057

Interaction of moving discrete breathers with interstitial defects

1. 

Grupo de Física No Lineal. Departamento de Física Aplicada I., Escuela Politécnica Superior. Universidad de Sevilla, C/ Virgen de África, 7, 41011-Sevilla, Spain

2. 

Grupo de Física No Lineal. Departamento de Física Aplicada I., Escuela Politécnica Superior. Universidad de Sevilla, C/ Virgen de África, 7. 41011 Sevilla, Spain

3. 

Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom

4. 

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom

Received  July 2009 Revised  October 2009 Published  December 2010

In this paper, interstitial migration generated by scattering with a mobile breather is investigated numerically in a Frenkel-Kontorova one-dimensional lattice. Consistent with experimental results, it is shown that interstitial diffusion is more likely and faster than vacancy diffusion. Our simulations support the hypothesis that a long-range energy transport mechanism involving moving nonlinear vibrational excitations may significantly enhance the mobility of point defects in a crystal lattice.
Citation: Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057
References:
[1]

G. Abrasonis, W. Möller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.065901. Google Scholar

[2]

G. Abrasonis, J. P. Rivière, C. Templier, A. Declémy, L. Pranevicius and X. Milhet, Ion beam nitriding of single and polycrystalline austenitic stainless steel,, J. Appl. Phys., 97 (2005). doi: 10.1063/1.1863455. Google Scholar

[3]

A. Álvarez, J. F. R. Archilla, F. R. Romero, J. Cuevas and P. V. Larsen, Breather trapping and breather transmission in a DNA model with an interface,, Eur. Phys. J. B, 51 (2006), 119. Google Scholar

[4]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice dynamics (Paris, 1995),, Physica D, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8. Google Scholar

[5]

S. Aubry and T. Cretegny, Mobility and reactivity of discrete breathers, Localization in nonlinear lattices (Dresden, 1997),, Physica D, 119 (1998), 34. doi: 10.1016/S0167-2789(98)00062-1. Google Scholar

[6]

A. S. Barker and A. J. Sievers, Optical studies of the vibrational properties of disordered solids,, Rev. Mod. Phys., 47 (1975). doi: 10.1103/RevModPhys.47.S1.2. Google Scholar

[7]

I. Bena, A. Saxena and J. M. Sancho, Interaction of a discrete breather with a lattice junction,, Phys. Rev. E, 65 (2002). doi: 10.1103/PhysRevE.66.036617. Google Scholar

[8]

O. M. Braun and Yu. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model,, Phys. Rep., 306 (1998), 1. doi: 10.1016/S0370-1573(98)00029-5. Google Scholar

[9]

O. M. Braun and Yu. S. Kivshar, "The Frenkel-Kontorova Model: Concepts, Methods and Applications," Texts and Monographs in Physics,, Springer-Verlag, (2004). Google Scholar

[10]

D. Chen, S. Aubry and G. P. Tsironis, Breather mobility in discrete $\phi^4$ nonlinear lattices,, Phys. Rev. Lett., 77 (1996), 4776. doi: 10.1103/PhysRevLett.77.4776. Google Scholar

[11]

J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006), 115. doi: 10.1016/j.physd.2005.12.022. Google Scholar

[12]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett. A, 315 (2003), 364. doi: 10.1016/S0375-9601(03)01097-1. Google Scholar

[13]

J. Cuevas and P. G. Kevrekidis, Breathers statics and dynamics in Klein-Gordon chains with a bend,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.056609. Google Scholar

[14]

J. Cuevas, F. Palmero, J. F. R. Archilla and F. R. Romero, Moving discrete breathers in a Klein-Gordon chain with an impurity,, J. Phys. A: Math. and Gen., 35 (2002), 10519. doi: 10.1088/0305-4470/35/49/302. Google Scholar

[15]

T. Dauxois and M. Peyrard, "Physics of Solitons,", Cambridge University Press, (2006). Google Scholar

[16]

S. V. Dmitriev, T. Miyauchi, K. Abe and T. Shigenari, Kink-breather solution in the weakly discrete Frenkel-Kontorova model,, Phys. Rev. E, 61 (1998), 5880. doi: 10.1103/PhysRevE.61.5880. Google Scholar

[17]

S. V. Dmitriev, T. Shigenari, A. A. Vasiliev and A. E. Miroshnichenko, Effect of discreteness on a sine-Gordon three-soliton solution,, Phys. Lett. A, 246 (1998). doi: 10.1016/S0375-9601(98)00459-9. Google Scholar

[18]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press, (1982). Google Scholar

[19]

J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Soliton structure in crystalline acetanilide,, Phys. Rev. B, 30 (1984), 4703. doi: 10.1103/PhysRevB.30.4703. Google Scholar

[20]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison, Discrete spatial optical solitons in waveguide arrays,, Phys. Rev. Lett., 81 (1998), 3383. Google Scholar

[21]

S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 467 (2008), 1. doi: 10.1016/j.physrep.2008.05.002. Google Scholar

[22]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Adv. Phys., 45 (1996), 505. Google Scholar

[23]

K. Forinash, M. Peyrard and B. A. Malomed, Interaction of discrete breathers with impurity modes,, Phys. Rev. E, 49 (1994), 3400. doi: 10.1103/PhysRevE.49.3400. Google Scholar

[24]

Ya. I. Frenkel and T. Kontorova, On the theory of plastic deformations and twinning,, J. Phys., 1 (1939), 137. Google Scholar

[25]

M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev and S. Flach, Discrete breathers in transient processes and thermal equilibrium,, Physica D, 198 (2004), 120. doi: 10.1016/j.physd.2004.08.025. Google Scholar

[26]

P. V. Larsen, P. L. Christiansen, O. Bang, J. F. R. Archilla and Yu. B. Gaididei, Energy funneling in a bent chain of Morse oscillators with long-range coupling,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.026603. Google Scholar

[27]

J. L. Marín and S. Aubry, Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit,, Nonlinearity, 9 (1996), 1501. doi: 10.1088/0951-7715/9/6/007. Google Scholar

[28]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2D hexagonal lattice,, Phys. Lett. A, 248 (1998), 225. Google Scholar

[29]

F. M. Russell and D. R. Collins, Lattice-solitons in radiation damage,, Nucl. Inst. Meth. Phys. Res. B, 105 (1995), 30. doi: 10.1016/0168-583X(95)00934-5. Google Scholar

[30]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhys. Lett., 78 (2007). doi: 10.1209/0295-5075/78/10004. Google Scholar

[31]

M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Observation of locked intrinsic localized vibrational modes in micromechanical oscillator array,, Phys. Rev. Lett., 90 (2003). doi: 10.1103/PhysRevLett.90.044102. Google Scholar

[32]

M. Sato, B. E. Hubbard and A. J. Sievers, Nonlinear energy localization and its manipulation in micromechanical ocillator arrays,, Rev. Mod. Phys., 78 (2006), 137. doi: 10.1103/RevModPhys.78.137. Google Scholar

[33]

P. Sen, J. Akhtar and F. M. Russell, MeV ion-induced movement of lattice disorder in sigle crystalline silicon,, Europhys. Lett., 51 (2000), 401. doi: 10.1209/epl/i2000-00508-7. Google Scholar

[34]

B. I. Swanson, J. A. Brozik, S. P. Love, G. O. Strouse, A. P. Shreve, A. R. Bishop, W. Z. Wang and M. I. Salkola, Observation of intrinsically localized modes in a discrete low-dimensional material,, Phys. Rev. Lett., 82 (1999), 3288. doi: 10.1103/PhysRevLett.82.3288. Google Scholar

[35]

E. Trías, J. J. Mazo and T. P. Orlando, Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array,, Phys. Rev. Lett., 84 (2000), 741. doi: 10.1103/PhysRevLett.84.741. Google Scholar

[36]

G. P. Tsironis, J. M. Sancho, M. Ibañes, Localized energy transport in biopolymer models with rigidity,, Europhys. Lett., 57 (2002), 697. doi: 10.1209/epl/i2002-00519-4. Google Scholar

[37]

D. L. Williamson, J. A. Davis, P. J. Wilbur, J. J. Vajo, R. Wei and J. N. Matossian, Relative roles of ion energy, ion flux, and sample temperature in low-energy nitrogen ion implantation of Fe--Cr--Ni stainless steel,, Nucl. Inst. Meth. Phys. Res. B, 127 (1997), 930. doi: 10.1016/S0168-583X(97)00033-5. Google Scholar

[38]

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen and R. Dronskowski, The role of vacancies and local distortions in the design of new phase-change materials,, Nature Materials, 6 (2007), 122. doi: 10.1038/nmat1807. Google Scholar

show all references

References:
[1]

G. Abrasonis, W. Möller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006). doi: 10.1103/PhysRevLett.96.065901. Google Scholar

[2]

G. Abrasonis, J. P. Rivière, C. Templier, A. Declémy, L. Pranevicius and X. Milhet, Ion beam nitriding of single and polycrystalline austenitic stainless steel,, J. Appl. Phys., 97 (2005). doi: 10.1063/1.1863455. Google Scholar

[3]

A. Álvarez, J. F. R. Archilla, F. R. Romero, J. Cuevas and P. V. Larsen, Breather trapping and breather transmission in a DNA model with an interface,, Eur. Phys. J. B, 51 (2006), 119. Google Scholar

[4]

S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice dynamics (Paris, 1995),, Physica D, 103 (1997), 201. doi: 10.1016/S0167-2789(96)00261-8. Google Scholar

[5]

S. Aubry and T. Cretegny, Mobility and reactivity of discrete breathers, Localization in nonlinear lattices (Dresden, 1997),, Physica D, 119 (1998), 34. doi: 10.1016/S0167-2789(98)00062-1. Google Scholar

[6]

A. S. Barker and A. J. Sievers, Optical studies of the vibrational properties of disordered solids,, Rev. Mod. Phys., 47 (1975). doi: 10.1103/RevModPhys.47.S1.2. Google Scholar

[7]

I. Bena, A. Saxena and J. M. Sancho, Interaction of a discrete breather with a lattice junction,, Phys. Rev. E, 65 (2002). doi: 10.1103/PhysRevE.66.036617. Google Scholar

[8]

O. M. Braun and Yu. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model,, Phys. Rep., 306 (1998), 1. doi: 10.1016/S0370-1573(98)00029-5. Google Scholar

[9]

O. M. Braun and Yu. S. Kivshar, "The Frenkel-Kontorova Model: Concepts, Methods and Applications," Texts and Monographs in Physics,, Springer-Verlag, (2004). Google Scholar

[10]

D. Chen, S. Aubry and G. P. Tsironis, Breather mobility in discrete $\phi^4$ nonlinear lattices,, Phys. Rev. Lett., 77 (1996), 4776. doi: 10.1103/PhysRevLett.77.4776. Google Scholar

[11]

J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006), 115. doi: 10.1016/j.physd.2005.12.022. Google Scholar

[12]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett. A, 315 (2003), 364. doi: 10.1016/S0375-9601(03)01097-1. Google Scholar

[13]

J. Cuevas and P. G. Kevrekidis, Breathers statics and dynamics in Klein-Gordon chains with a bend,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.056609. Google Scholar

[14]

J. Cuevas, F. Palmero, J. F. R. Archilla and F. R. Romero, Moving discrete breathers in a Klein-Gordon chain with an impurity,, J. Phys. A: Math. and Gen., 35 (2002), 10519. doi: 10.1088/0305-4470/35/49/302. Google Scholar

[15]

T. Dauxois and M. Peyrard, "Physics of Solitons,", Cambridge University Press, (2006). Google Scholar

[16]

S. V. Dmitriev, T. Miyauchi, K. Abe and T. Shigenari, Kink-breather solution in the weakly discrete Frenkel-Kontorova model,, Phys. Rev. E, 61 (1998), 5880. doi: 10.1103/PhysRevE.61.5880. Google Scholar

[17]

S. V. Dmitriev, T. Shigenari, A. A. Vasiliev and A. E. Miroshnichenko, Effect of discreteness on a sine-Gordon three-soliton solution,, Phys. Lett. A, 246 (1998). doi: 10.1016/S0375-9601(98)00459-9. Google Scholar

[18]

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations,", Academic Press, (1982). Google Scholar

[19]

J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Soliton structure in crystalline acetanilide,, Phys. Rev. B, 30 (1984), 4703. doi: 10.1103/PhysRevB.30.4703. Google Scholar

[20]

H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison, Discrete spatial optical solitons in waveguide arrays,, Phys. Rev. Lett., 81 (1998), 3383. Google Scholar

[21]

S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 467 (2008), 1. doi: 10.1016/j.physrep.2008.05.002. Google Scholar

[22]

L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model,, Adv. Phys., 45 (1996), 505. Google Scholar

[23]

K. Forinash, M. Peyrard and B. A. Malomed, Interaction of discrete breathers with impurity modes,, Phys. Rev. E, 49 (1994), 3400. doi: 10.1103/PhysRevE.49.3400. Google Scholar

[24]

Ya. I. Frenkel and T. Kontorova, On the theory of plastic deformations and twinning,, J. Phys., 1 (1939), 137. Google Scholar

[25]

M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev and S. Flach, Discrete breathers in transient processes and thermal equilibrium,, Physica D, 198 (2004), 120. doi: 10.1016/j.physd.2004.08.025. Google Scholar

[26]

P. V. Larsen, P. L. Christiansen, O. Bang, J. F. R. Archilla and Yu. B. Gaididei, Energy funneling in a bent chain of Morse oscillators with long-range coupling,, Phys. Rev. E, 69 (2004). doi: 10.1103/PhysRevE.69.026603. Google Scholar

[27]

J. L. Marín and S. Aubry, Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit,, Nonlinearity, 9 (1996), 1501. doi: 10.1088/0951-7715/9/6/007. Google Scholar

[28]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2D hexagonal lattice,, Phys. Lett. A, 248 (1998), 225. Google Scholar

[29]

F. M. Russell and D. R. Collins, Lattice-solitons in radiation damage,, Nucl. Inst. Meth. Phys. Res. B, 105 (1995), 30. doi: 10.1016/0168-583X(95)00934-5. Google Scholar

[30]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhys. Lett., 78 (2007). doi: 10.1209/0295-5075/78/10004. Google Scholar

[31]

M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Observation of locked intrinsic localized vibrational modes in micromechanical oscillator array,, Phys. Rev. Lett., 90 (2003). doi: 10.1103/PhysRevLett.90.044102. Google Scholar

[32]

M. Sato, B. E. Hubbard and A. J. Sievers, Nonlinear energy localization and its manipulation in micromechanical ocillator arrays,, Rev. Mod. Phys., 78 (2006), 137. doi: 10.1103/RevModPhys.78.137. Google Scholar

[33]

P. Sen, J. Akhtar and F. M. Russell, MeV ion-induced movement of lattice disorder in sigle crystalline silicon,, Europhys. Lett., 51 (2000), 401. doi: 10.1209/epl/i2000-00508-7. Google Scholar

[34]

B. I. Swanson, J. A. Brozik, S. P. Love, G. O. Strouse, A. P. Shreve, A. R. Bishop, W. Z. Wang and M. I. Salkola, Observation of intrinsically localized modes in a discrete low-dimensional material,, Phys. Rev. Lett., 82 (1999), 3288. doi: 10.1103/PhysRevLett.82.3288. Google Scholar

[35]

E. Trías, J. J. Mazo and T. P. Orlando, Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array,, Phys. Rev. Lett., 84 (2000), 741. doi: 10.1103/PhysRevLett.84.741. Google Scholar

[36]

G. P. Tsironis, J. M. Sancho, M. Ibañes, Localized energy transport in biopolymer models with rigidity,, Europhys. Lett., 57 (2002), 697. doi: 10.1209/epl/i2002-00519-4. Google Scholar

[37]

D. L. Williamson, J. A. Davis, P. J. Wilbur, J. J. Vajo, R. Wei and J. N. Matossian, Relative roles of ion energy, ion flux, and sample temperature in low-energy nitrogen ion implantation of Fe--Cr--Ni stainless steel,, Nucl. Inst. Meth. Phys. Res. B, 127 (1997), 930. doi: 10.1016/S0168-583X(97)00033-5. Google Scholar

[38]

M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen and R. Dronskowski, The role of vacancies and local distortions in the design of new phase-change materials,, Nature Materials, 6 (2007), 122. doi: 10.1038/nmat1807. Google Scholar

[1]

Wen-Xin Qin. Modulation of uniform motion in diatomic Frenkel-Kontorova model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3773-3788. doi: 10.3934/dcds.2014.34.3773

[2]

Wen-Xin Qin. Rotating modes in the Frenkel-Kontorova model with periodic interaction potential. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1147-1158. doi: 10.3934/dcds.2010.27.1147

[3]

Qingxu Dou, Jesús Cuevas, J. C. Eilbeck, Francis Michael Russell. Breathers and kinks in a simulated crystal experiment. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1107-1118. doi: 10.3934/dcdss.2011.4.1107

[4]

Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933

[5]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[6]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic & Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[7]

Hua Chen, Shaohua Wu. The moving boundary problem in a chemotaxis model. Communications on Pure & Applied Analysis, 2012, 11 (2) : 735-746. doi: 10.3934/cpaa.2012.11.735

[8]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[9]

Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202

[10]

Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995

[11]

Mahadevan Ganesh, Brandon C. Reyes, Avi Purkayastha. An FEM-MLMC algorithm for a moving shutter diffraction in time stochastic model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 257-272. doi: 10.3934/dcdsb.2018107

[12]

Lorenzo Audibert, Alexandre Girard, Houssem Haddar. Identifying defects in an unknown background using differential measurements. Inverse Problems & Imaging, 2015, 9 (3) : 625-643. doi: 10.3934/ipi.2015.9.625

[13]

S. Rüdiger, J. Casademunt, L. Kramer. Kinks in stripe forming systems under traveling wave forcing. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1027-1042. doi: 10.3934/dcdsb.2005.5.1027

[14]

Giovanni Russo, Francis Filbet. Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinetic & Related Models, 2009, 2 (1) : 231-250. doi: 10.3934/krm.2009.2.231

[15]

Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems & Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947

[16]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[17]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[18]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[19]

Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

[20]

Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

[Back to Top]