Advanced Search
Article Contents
Article Contents

Interaction of moving discrete breathers with interstitial defects

Abstract Related Papers Cited by
  • In this paper, interstitial migration generated by scattering with a mobile breather is investigated numerically in a Frenkel-Kontorova one-dimensional lattice. Consistent with experimental results, it is shown that interstitial diffusion is more likely and faster than vacancy diffusion. Our simulations support the hypothesis that a long-range energy transport mechanism involving moving nonlinear vibrational excitations may significantly enhance the mobility of point defects in a crystal lattice.
    Mathematics Subject Classification: Primary: 70K75, 74J30.


    \begin{equation} \\ \end{equation}
  • [1]

    G. Abrasonis, W. Möller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen, Phys. Rev. Lett., 96 (2006), 065901.doi: 10.1103/PhysRevLett.96.065901.


    G. Abrasonis, J. P. Rivière, C. Templier, A. Declémy, L. Pranevicius and X. Milhet, Ion beam nitriding of single and polycrystalline austenitic stainless steel, J. Appl. Phys., 97 (2005), 083531.doi: 10.1063/1.1863455.


    A. Álvarez, J. F. R. Archilla, F. R. Romero, J. Cuevas and P. V. Larsen, Breather trapping and breather transmission in a DNA model with an interface, Eur. Phys. J. B, 51 (2006), 119-130.


    S. Aubry, Breathers in nonlinear lattices: Existence, linear stability and quantization, Lattice dynamics (Paris, 1995), Physica D, 103 (1997), 201-250.doi: 10.1016/S0167-2789(96)00261-8.


    S. Aubry and T. Cretegny, Mobility and reactivity of discrete breathers, Localization in nonlinear lattices (Dresden, 1997), Physica D, 119 (1998), 34-46.doi: 10.1016/S0167-2789(98)00062-1.


    A. S. Barker and A. J. Sievers, Optical studies of the vibrational properties of disordered solids, Rev. Mod. Phys., 47 (1975), S1-S179.doi: 10.1103/RevModPhys.47.S1.2.


    I. Bena, A. Saxena and J. M. Sancho, Interaction of a discrete breather with a lattice junction, Phys. Rev. E, 65 (2002), 036617.doi: 10.1103/PhysRevE.66.036617.


    O. M. Braun and Yu. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Phys. Rep., 306 (1998), 1-108.doi: 10.1016/S0370-1573(98)00029-5.


    O. M. Braun and Yu. S. Kivshar, "The Frenkel-Kontorova Model: Concepts, Methods and Applications," Texts and Monographs in Physics, Springer-Verlag, Berlin, 2004.


    D. Chen, S. Aubry and G. P. Tsironis, Breather mobility in discrete $\phi^4$ nonlinear lattices, Phys. Rev. Lett., 77 (1996), 4776-4779.doi: 10.1103/PhysRevLett.77.4776.


    J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies, Physica D, 216 (2006), 115-120.doi: 10.1016/j.physd.2005.12.022.


    J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration, Phys. Lett. A, 315 (2003), 364-371.doi: 10.1016/S0375-9601(03)01097-1.


    J. Cuevas and P. G. Kevrekidis, Breathers statics and dynamics in Klein-Gordon chains with a bend, Phys. Rev. E, 69 (2004), 056609.doi: 10.1103/PhysRevE.69.056609.


    J. Cuevas, F. Palmero, J. F. R. Archilla and F. R. Romero, Moving discrete breathers in a Klein-Gordon chain with an impurity, J. Phys. A: Math. and Gen., 35 (2002), 10519-10530.doi: 10.1088/0305-4470/35/49/302.


    T. Dauxois and M. Peyrard, "Physics of Solitons," Cambridge University Press, 2006.


    S. V. Dmitriev, T. Miyauchi, K. Abe and T. Shigenari, Kink-breather solution in the weakly discrete Frenkel-Kontorova model, Phys. Rev. E, 61 (1998), 5880-5885.doi: 10.1103/PhysRevE.61.5880.


    S. V. Dmitriev, T. Shigenari, A. A. Vasiliev and A. E. Miroshnichenko, Effect of discreteness on a sine-Gordon three-soliton solution, Phys. Lett. A, 246 (1998), 129.doi: 10.1016/S0375-9601(98)00459-9.


    R. K. Dodd, J. C. Eilbeck, J. D. Gibbon and H. C. Morris, "Solitons and Nonlinear Wave Equations," Academic Press, London, 1982.


    J. C. Eilbeck, P. S. Lomdahl and A. C. Scott, Soliton structure in crystalline acetanilide, Phys. Rev. B, 30 (1984), 4703-4712.doi: 10.1103/PhysRevB.30.4703.


    H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd and J. S. Aitchison, Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett., 81 (1998), 3383-3386.


    S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications, Phys. Rep., 467 (2008), 1-116.doi: 10.1016/j.physrep.2008.05.002.


    L. M. Floría and J. J. Mazo, Dissipative dynamics of the Frenkel-Kontorova model, Adv. Phys., 45 (1996), 505-598.


    K. Forinash, M. Peyrard and B. A. Malomed, Interaction of discrete breathers with impurity modes, Phys. Rev. E, 49 (1994), 3400-3411.doi: 10.1103/PhysRevE.49.3400.


    Ya. I. Frenkel and T. Kontorova, On the theory of plastic deformations and twinning, J. Phys., 1 (1939), 137-149.


    M. V. Ivanchenko, O. I. Kanakov, V. D. Shalfeev and S. Flach, Discrete breathers in transient processes and thermal equilibrium, Physica D, 198 (2004), 120-135.doi: 10.1016/j.physd.2004.08.025.


    P. V. Larsen, P. L. Christiansen, O. Bang, J. F. R. Archilla and Yu. B. Gaididei, Energy funneling in a bent chain of Morse oscillators with long-range coupling, Phys. Rev. E, 69 (2004), 026603.doi: 10.1103/PhysRevE.69.026603.


    J. L. Marín and S. Aubry, Breathers in nonlinear lattices: Numerical calculation from the anticontinuous limit, Nonlinearity, 9 (1996), 1501-1528.doi: 10.1088/0951-7715/9/6/007.


    J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2D hexagonal lattice, Phys. Lett. A, 248 (1998), 225-229.


    F. M. Russell and D. R. Collins, Lattice-solitons in radiation damage, Nucl. Inst. Meth. Phys. Res. B, 105 (1995), 30-34.doi: 10.1016/0168-583X(95)00934-5.


    F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K, Europhys. Lett., 78 (2007), 10004.doi: 10.1209/0295-5075/78/10004.


    M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Observation of locked intrinsic localized vibrational modes in micromechanical oscillator array, Phys. Rev. Lett., 90 (2003), 044102.doi: 10.1103/PhysRevLett.90.044102.


    M. Sato, B. E. Hubbard and A. J. Sievers, Nonlinear energy localization and its manipulation in micromechanical ocillator arrays, Rev. Mod. Phys., 78 (2006), 137-157.doi: 10.1103/RevModPhys.78.137.


    P. Sen, J. Akhtar and F. M. Russell, MeV ion-induced movement of lattice disorder in sigle crystalline silicon, Europhys. Lett., 51 (2000), 401-406.doi: 10.1209/epl/i2000-00508-7.


    B. I. Swanson, J. A. Brozik, S. P. Love, G. O. Strouse, A. P. Shreve, A. R. Bishop, W. Z. Wang and M. I. Salkola, Observation of intrinsically localized modes in a discrete low-dimensional material, Phys. Rev. Lett., 82 (1999), 3288-3291.doi: 10.1103/PhysRevLett.82.3288.


    E. Trías, J. J. Mazo and T. P. Orlando, Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array, Phys. Rev. Lett., 84 (2000), 741-744.doi: 10.1103/PhysRevLett.84.741.


    G. P. Tsironis, J. M. Sancho, M. Ibañes, Localized energy transport in biopolymer models with rigidity, Europhys. Lett., 57 (2002), 697-703.doi: 10.1209/epl/i2002-00519-4.


    D. L. Williamson, J. A. Davis, P. J. Wilbur, J. J. Vajo, R. Wei and J. N. Matossian, Relative roles of ion energy, ion flux, and sample temperature in low-energy nitrogen ion implantation of Fe--Cr--Ni stainless steel, Nucl. Inst. Meth. Phys. Res. B, 127 (1997), 930-934.doi: 10.1016/S0168-583X(97)00033-5.


    M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen and R. Dronskowski, The role of vacancies and local distortions in the design of new phase-change materials, Nature Materials, 6 (2007), 122-128.doi: 10.1038/nmat1807.

  • 加载中

Article Metrics

HTML views() PDF downloads(89) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint