\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dynamics of edge dislocation clusters interacting with running acoustic waves

Abstract Related Papers Cited by
  • Interaction of straight edge dislocation clusters with monochromatic sound wave having nonzero wavevector is investigated taking into account the dislocation mass. We report on a significant increase of drift velocities of clusters when the sound wave frequency approaches a cluster's eigenfrequency. Of practical importance is the increase of the drift velocity observed for clusters with nonzero topological charge interacting with small frequency sound waves. We also demonstrate the possibility to excite a gap discrete breather in a chain of dislocation dipoles.
    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    O. V. Abramov, "High Intensity Ultrasonics. Theory and Industrial Applications," Gordon and Breach, Dodrecht, 1998.

    [2]

    V. O. Abramov, O. V. Abramov, F. Sommer, O. M. Gradov and O. M. Smirnov, Surface hardening of metals by ultrasonically accelerated small metal balls, Ultrasonics, 36 (1998), 1013-1019.doi: 10.1016/S0041-624X(98)00027-4.

    [3]

    E. C. Aifantis, The physics of plastic deformation, Int. J. Plasticity, 8 (1987), 211-247.doi: 10.1016/0749-6419(87)90021-0.

    [4]

    E. C. Aifantis, Update on a class of gradient theories, Mech. Mater., 35 (2003), 259-280.doi: 10.1016/S0167-6636(02)00278-8.

    [5]

    J. A. Baimova, S. V. Dmitriev, A. A. Nazarov and A. I. Pshenichnyuk, Dynamics of edge dislocations in a two-dimensional crystal at finite temperatures, Physics of the Solid State, 51 (2009), 1809-1813.doi: 10.1134/S106378340909008X.

    [6]

    B. Bako and I. Groma, Stochastic O(N) algorithm for dislocation dynamics, Modelling Simul. Mater. Sci. Eng, 7 (1999), 181-188.doi: 10.1088/0965-0393/7/2/004.

    [7]

    B. Bako, I. Groma, G. Gyorgyi and G. Zimanyi, Dislocation patterning: The role of climb in meso-scale simulations, Comput. Mater. Sci, 38 (2006), 22-28.doi: 10.1016/j.commatsci.2005.12.034.

    [8]

    B. Bako, I. Groma, I. Mastorakos and E. C. Aifantis, Investigation of dislocation patterning by stochastic integration of dislocation trajectories, Modelling Simul. Mater. Sci. Eng, 13 (2005), 671-681.doi: 10.1088/0965-0393/13/5/003.

    [9]

    D. S. Balint, V. S. Deshpande, A. Needleman and E. Van Der Giessen, Size effects in uniaxial deformation of single and polycrystals: A discrete dislocation plasticity analysis, Modelling Simul. Mater. Sci. Eng, 14 (2006), 409-430.doi: 10.1088/0965-0393/14/3/005.

    [10]

    A. A. Benzerga, Y. Brechet, A. Needleman and E. Van den Giessen, Incorporating three-dimensional mechanisms into two-dimensional dislocation dynamics, Modelling Simul. Mater. Sci. Eng, 12 (2004), 159-196.doi: 10.1088/0965-0393/12/1/014.

    [11]

    C. E. Bottani, P. Cavassi and P. Pisani, Non-linear interaction of dislocation pile-ups with ultrasonic stress waves, J. Phys.: Condens. Matter, 3 (1991), 9351-9362.doi: 10.1088/0953-8984/3/47/008.

    [12]

    G. V. Bushueva, G. M. Zinenkova, N. A. Tyapunina, V. T. Degtyarev, A. Yu. Losev and F. A. Plotnikov, Self-organization of dislocations in an ultrasound field, Crystallography Reports, 53 (2008), 474-479.doi: 10.1134/S1063774508030152.

    [13]

    V. T. Degtyarev, On possible mechanisms of the acoustoplastic effect, Doklady physics, 52 (2007), 245-246.doi: 10.1134/S1028335807050011.

    [14]

    O. Dmitrieva, J. V. Svirina, E. Demir and D. Raabe, Investigation of the internal substructure of microbands in a deformed copper single crystal: experiments and dislocation dynamics simulation, Modelling Simul. Mater. Sci. Eng., 18 (2010), 085011 (14pp).

    [15]

    J. P. Hirth and J. Lothe, "Theory of Dislocations," 2nd edition, Wiley, New York, 1982.

    [16]

    S. M. Keralavarma and A. A. Benzerga, A discrete dislocation analysis of strengthening in bilayer thin films, Modelling Simul. Mater. Sci. Eng, 15 (2007), S239-S254.doi: 10.1088/0965-0393/15/1/S18.

    [17]

    V. M. Klyachin, V. V. Nikolaev, N. I. Noskova and Y. E. G. Ponomareva, Local change in the substructure of aluminium and alloy Al+11wt% Mg exposed to focused ultrasonic waves, Physics of Metals and Metallography, 71 (1991), 188-198.

    [18]

    Yu. R. Kolobov, O. A. Kashin, E. F. Dudarev, G. P. Grabovetskaya, G. P. Pochivalova, V. A. Klimenov, N. V. Girsova and E. E. Sagymbaev, Effects of ultrasonic surface treatment on the structure and properties of polycrystalline and nanostructured titanium, Russian Physics Journal, 43 (2000), 754-758.doi: 10.1023/A:1009479919904.

    [19]

    J. J. Kratochvil and F. Kroupa, Internal vibrations of edge dislocation dipoles, Research Letters in Materials Science, (2008), Article ID 907895 (3 pages).

    [20]

    J. Pontes, D. Walgraef and E. C. Aifantis, On dislocation patterning: Multiple slip effects in the rate equation approach, Int. J. Plasticity, 22 (2006), 1486-1505.doi: 10.1016/j.ijplas.2005.07.011.

    [21]

    E. Sh. Statnikov, O. V. Korolkov and V. N. Vityazev, Physics and mechanism of ultrasonic impact, Ultrasonics, 44 (2006), 533-538.doi: 10.1016/j.ultras.2006.05.119.

    [22]

    T. Suzuki, S. Takeuchi and H. Yoshinaga, "Dislocation Dynamics and Plasticity," Springer Veriag, Berlin, 1989.

    [23]

    N. A. Tyapunina and E. P. Belozerova, Charged dislocations and properties of alkali halide crystals, Sov. Phys. Usp, 31 (1988), 1060-1084.doi: 10.1070/PU1988v031n12ABEH005660.

    [24]

    N. A. Tyapunina, G. V. Bushueva, M. I. Silis, D. S. Podsoblyaev, Yu. B. Likhushin and V. Yu. Bogunenko, The cross slip of a dislocation in an ultrasound field and its dependence on the ultrasound amplitude and frequency, sample orientation, and dynamic viscosity, Phys. Solid State, 45 (2003), 880-885.doi: 10.1134/1.1575327.

    [25]

    N. A. Tyapunina, E. K. Naimi and G. M. Zinenkova, "Ultrasound Action on Crystals with Defects" (in Russian), Mosk. Gos. Univ., Moscow, 1999.

    [26]

    J. Vollmann, D. M. Profunser and J. Dual, Sensitivity improvement of a pump-probe set-up for thin film and microstructure metrology, Ultrasonics, 40 (2002), 757-763.

    [27]

    D. Walgraef and E. C. Aifantis, Dislocation patterning in fatigued metals as a result of dynamical instabilities, J. Appl. Phys., 58 (1985), 688-691.doi: 10.1063/1.336183.

    [28]

    R. Walker and C. T. Walker, Hardening of immersed metals by ultrasound, Nature, 250 (1974), 410-411.doi: 10.1038/250410a0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return