-
Previous Article
Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects
- DCDS-S Home
- This Issue
-
Next Article
The dynamics of the kink in curved large area Josephson junction
Breathers and kinks in a simulated crystal experiment
1. | School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom |
2. | Grupo de Física No Lineal. Departamento de Física Aplicada I., Escuela Politécnica Superior. Universidad de Sevilla, C/ Virgen de África, 7, 41011-Sevilla |
3. | Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom |
4. | Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom |
References:
[1] |
J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006).
doi: 10.1016/j.physd.2005.12.022. |
[2] |
J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.
doi: 10.1016/S0375-9601(03)01097-1. |
[3] |
J. Cuevas, B. Sánchez-Rey, J. C. Eilbeck and F. M. Russell, Interaction of moving discrete breathers with simulated interstitial defects,, in these proceedings, (2009). Google Scholar |
[4] |
S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems,, Phys. Rev. E, 50 (1994).
doi: 10.1103/PhysRevE.50.3134. |
[5] |
S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 267 (2008).
doi: 10.1016/j.physrep.2008.05.002. |
[6] |
J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225. Google Scholar |
[7] |
F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhysics Letters, 78 (2007).
doi: 10.1209/0295-5075/78/10004. |
[8] |
F. M. Russell and J. C. Eilbeck, Persistent mobile lattice excitations in a crystalline insulator,, in these proceedings, (2009). Google Scholar |
[9] |
X. Yi, J. A. D. Wattis, H. Susanto and L. J. Cummings, Discrete breathers in a two-dimensional spring-mass lattice,, J. Phys. A: Math. and Theor., 42 (2009).
doi: 10.1088/1751-8113/42/35/355207. |
show all references
References:
[1] |
J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006).
doi: 10.1016/j.physd.2005.12.022. |
[2] |
J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.
doi: 10.1016/S0375-9601(03)01097-1. |
[3] |
J. Cuevas, B. Sánchez-Rey, J. C. Eilbeck and F. M. Russell, Interaction of moving discrete breathers with simulated interstitial defects,, in these proceedings, (2009). Google Scholar |
[4] |
S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems,, Phys. Rev. E, 50 (1994).
doi: 10.1103/PhysRevE.50.3134. |
[5] |
S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 267 (2008).
doi: 10.1016/j.physrep.2008.05.002. |
[6] |
J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225. Google Scholar |
[7] |
F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhysics Letters, 78 (2007).
doi: 10.1209/0295-5075/78/10004. |
[8] |
F. M. Russell and J. C. Eilbeck, Persistent mobile lattice excitations in a crystalline insulator,, in these proceedings, (2009). Google Scholar |
[9] |
X. Yi, J. A. D. Wattis, H. Susanto and L. J. Cummings, Discrete breathers in a two-dimensional spring-mass lattice,, J. Phys. A: Math. and Theor., 42 (2009).
doi: 10.1088/1751-8113/42/35/355207. |
[1] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
[2] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[3] |
Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222 |
[4] |
Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020105 |
[5] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[6] |
Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020434 |
[7] |
Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087 |
[8] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[9] |
Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052 |
[10] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294 |
[11] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[12] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[13] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[14] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[15] |
Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115 |
[16] |
Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297 |
[17] |
Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272 |
[18] |
Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366 |
[19] |
D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346 |
[20] |
Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]