October  2011, 4(5): 1107-1118. doi: 10.3934/dcdss.2011.4.1107

Breathers and kinks in a simulated crystal experiment

1. 

School of Engineering and Physical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom

2. 

Grupo de Física No Lineal. Departamento de Física Aplicada I., Escuela Politécnica Superior. Universidad de Sevilla, C/ Virgen de África, 7, 41011-Sevilla

3. 

Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom

4. 

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom

Received  September 2009 Revised  December 2009 Published  December 2010

We develop a simple 1D model for the scattering of an incoming particle hitting the surface of mica crystal, the transmission of energy through the crystal by a localized mode, and the ejection of atom(s) at the incident or distant face. This is the first attempt to model the experiment described by Russell and Eilbeck in 2007 (EPL, 78, 10004). Although very basic, the model shows many interesting features, for example a complicated energy dependent transition between breather modes and a kink mode, and multiple ejections at both incoming and distant surfaces. In addition, the effect of a heavier surface layer is modelled, which can lead to internal reflections of breathers or kinks at the crystal surface.
Citation: Qingxu Dou, Jesús Cuevas, J. C. Eilbeck, Francis Michael Russell. Breathers and kinks in a simulated crystal experiment. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1107-1118. doi: 10.3934/dcdss.2011.4.1107
References:
[1]

J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006).  doi: 10.1016/j.physd.2005.12.022.  Google Scholar

[2]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[3]

J. Cuevas, B. Sánchez-Rey, J. C. Eilbeck and F. M. Russell, Interaction of moving discrete breathers with simulated interstitial defects,, in these proceedings, (2009).   Google Scholar

[4]

S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems,, Phys. Rev. E, 50 (1994).  doi: 10.1103/PhysRevE.50.3134.  Google Scholar

[5]

S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 267 (2008).  doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[6]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225.   Google Scholar

[7]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhysics Letters, 78 (2007).  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[8]

F. M. Russell and J. C. Eilbeck, Persistent mobile lattice excitations in a crystalline insulator,, in these proceedings, (2009).   Google Scholar

[9]

X. Yi, J. A. D. Wattis, H. Susanto and L. J. Cummings, Discrete breathers in a two-dimensional spring-mass lattice,, J. Phys. A: Math. and Theor., 42 (2009).  doi: 10.1088/1751-8113/42/35/355207.  Google Scholar

show all references

References:
[1]

J. Cuevas, J. F. R. Archilla, B. Sánchez-Rey and F. R. Romero, Interaction of moving discrete breathers with vacancies,, Physica D, 216 (2006).  doi: 10.1016/j.physd.2005.12.022.  Google Scholar

[2]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[3]

J. Cuevas, B. Sánchez-Rey, J. C. Eilbeck and F. M. Russell, Interaction of moving discrete breathers with simulated interstitial defects,, in these proceedings, (2009).   Google Scholar

[4]

S. Flach, Conditions on the existence of localized excitations in nonlinear discrete systems,, Phys. Rev. E, 50 (1994).  doi: 10.1103/PhysRevE.50.3134.  Google Scholar

[5]

S. Flach and A. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 267 (2008).  doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[6]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225.   Google Scholar

[7]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300K,, Europhysics Letters, 78 (2007).  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[8]

F. M. Russell and J. C. Eilbeck, Persistent mobile lattice excitations in a crystalline insulator,, in these proceedings, (2009).   Google Scholar

[9]

X. Yi, J. A. D. Wattis, H. Susanto and L. J. Cummings, Discrete breathers in a two-dimensional spring-mass lattice,, J. Phys. A: Math. and Theor., 42 (2009).  doi: 10.1088/1751-8113/42/35/355207.  Google Scholar

[1]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[2]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[3]

Hongyu Cheng, Shimin Wang. Response solutions to harmonic oscillators beyond multi–dimensional brjuno frequency. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020222

[4]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[5]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

[8]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[9]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[10]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[11]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[16]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[17]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[20]

Kimie Nakashima. Indefinite nonlinear diffusion problem in population genetics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3837-3855. doi: 10.3934/dcds.2020169

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (8)

[Back to Top]