October  2011, 4(5): 1119-1128. doi: 10.3934/dcdss.2011.4.1119

Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects

1. 

NSC Kharkov Institute of Physics and Technology, Akademicheskaya Str.1, Kharkov 61108, Ukraine

Received  September 2009 Revised  November 2009 Published  December 2010

A majority of radiation effects studies are connected with creation of radiation-induced defects in the crystal bulk, which causes the observed degradation of material properties, called radiation damage. In the present paper we consider mechanisms of recovery of the radiation damage, based on the radiation-induced formation of quodons (energetic, mobile, highly localized lattice excitations that propagate great distances along close-packed crystal directions) and their interaction with crystal defects such as voids and dislocations. The rate theory of microstructure evolution in solids modified with account of quodon-induced reactions is applied for description of the radiation-induced annealing of voids observed under low temperature ion irradiation of nickel. Comparison of the theory with experimental data is used for a quantitative estimation of the propagation range of quodons in metals. Some other related phenomena in radiation physics of crystals are discussed, which include the void lattice formation and electron-plastic effect.
Citation: Vladimir Dubinko. Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1119-1128. doi: 10.3934/dcdss.2011.4.1119
References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006), 065901.  doi: 10.1103/PhysRevLett.96.065901.  Google Scholar

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures,, J. Phys. Chem. B, 110 (2006), 24112.  doi: 10.1021/jp0631228.  Google Scholar

[3]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett. A, 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[4]

V. I. Dubinko, New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations,, Radiat. Eff. and Defects in Solids, 160 (2005), 85.  doi: 10.1080/10420150500132190.  Google Scholar

[5]

V. I. Dubinko, Breather mechanism of the void ordering in crystals under irradiation,, Nucl. and Methods in Physics Research B, 267 (2009), 2976.   Google Scholar

[6]

V. I. Dubinko and A.G. Guglya, Investigation of the void and dislocation loop formation and dissolution under ion and sub-threshold electron irradiation,, Report STCU 4368-T02, (2009), 1.   Google Scholar

[7]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling,, J. Nucl. Mater., 385 (2009), 228.  doi: 10.1016/j.jnucmat.2008.11.028.  Google Scholar

[8]

V. I. Dubinko and V. F. Klepikov, The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation,, J. Nucl. Mater., 362 (2007), 146.  doi: 10.1016/j.jnucmat.2007.01.018.  Google Scholar

[9]

V. I. Dubinko and N. P. Lazarev, Effect of the radiation-induced vacancy emission from voids on the void evolution,, Nucl. and Methods in Physics Research B, 228 (2005), 187.  doi: 10.1016/j.nimb.2004.10.043.  Google Scholar

[10]

V. I. Dubinko, and V. P. Lebedev, Investigation of the electroplastic effect under sub-threshold electron irradiation,, Report STCU 4368-T03, (2009), 1.   Google Scholar

[11]

V. I. Dubinko and A. A. Turkin, Self-organization of cavities under irradiation,, Appl. Phys. A, 58 (1994), 21.  doi: 10.1007/BF00331513.  Google Scholar

[12]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Effect of the radiation-induced emission of Schottky defects on the formation of colloids in alkali halides,, Radiat. Eff. and Defects in Solids, 158 (2003), 705.  doi: 10.1080/1042015031000112531.  Google Scholar

[13]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations,, Nucl. and Methods in Physics Research B, 228 (2005), 304.  doi: 10.1016/j.nimb.2004.10.061.  Google Scholar

[14]

J. H. Evans, Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation,, Phil Mag., 85 (2005), 1177.  doi: 10.1080/14786430512331325606.  Google Scholar

[15]

J. H. Evans, Comments on the role of 1-D and 2-D self-interstitial atom transport mechanisms in void- and bubble-lattice formation in cubic metals,, Phil. Mag. Letters, 87 (2007), 575.  doi: 10.1080/09500830701393148.  Google Scholar

[16]

S. Flach and A. V. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 467 (2008), 1.  doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[17]

W. Jager and H. Trinkaus, Defect ordering in metals under irradiation,, J. Nucl. Mater., 205 (1993), 394.  doi: 10.1016/0022-3115(93)90104-7.  Google Scholar

[18]

N. P. Lazarev and V. I. Dubinko, Molecular dynamics simulation of defects production in the vicinity of voids,, Radiat. Eff. and Defects in Solids, 158 (2003), 803.  doi: 10.1080/10420150310001631084.  Google Scholar

[19]

M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet and A. Alatas, Intrinsic localized modes observed in the high temperature vibrational spectrum of NaI,, Phys. Rev. B, 79 (2009), 134304.  doi: 10.1103/PhysRevB.79.134304.  Google Scholar

[20]

R. S. Nelson and M. W. Tompson, Atomic collision sequences in crystals of copper, silver and gold revealed by sputtering in energetic ion beams,, Proc. Roy. Soc., 259 (1960), 458.   Google Scholar

[21]

V. F. Petrenko, N. N. Khusnatdinov and I. Baker, Effect of X radiation on the plastic deformation of II-VI compounds,, Phys. Rev. B, 53 (1996), 15401.  doi: 10.1103/PhysRevB.53.15401.  Google Scholar

[22]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K,, Europhys. Lett, 78 (2007), 10004.  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[23]

R. H. Silsbee, Focusing in collision problems in solids,, J. Appl. Phys., 28 (1957), 1246.  doi: 10.1063/1.1722626.  Google Scholar

[24]

C. H. Woo and W. Frank, A theory of void-lattice formation,, J. Nucl. Mater., 137 (1985), 7.  doi: 10.1016/0022-3115(85)90044-3.  Google Scholar

show all references

References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006), 065901.  doi: 10.1103/PhysRevLett.96.065901.  Google Scholar

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures,, J. Phys. Chem. B, 110 (2006), 24112.  doi: 10.1021/jp0631228.  Google Scholar

[3]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett. A, 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[4]

V. I. Dubinko, New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations,, Radiat. Eff. and Defects in Solids, 160 (2005), 85.  doi: 10.1080/10420150500132190.  Google Scholar

[5]

V. I. Dubinko, Breather mechanism of the void ordering in crystals under irradiation,, Nucl. and Methods in Physics Research B, 267 (2009), 2976.   Google Scholar

[6]

V. I. Dubinko and A.G. Guglya, Investigation of the void and dislocation loop formation and dissolution under ion and sub-threshold electron irradiation,, Report STCU 4368-T02, (2009), 1.   Google Scholar

[7]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling,, J. Nucl. Mater., 385 (2009), 228.  doi: 10.1016/j.jnucmat.2008.11.028.  Google Scholar

[8]

V. I. Dubinko and V. F. Klepikov, The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation,, J. Nucl. Mater., 362 (2007), 146.  doi: 10.1016/j.jnucmat.2007.01.018.  Google Scholar

[9]

V. I. Dubinko and N. P. Lazarev, Effect of the radiation-induced vacancy emission from voids on the void evolution,, Nucl. and Methods in Physics Research B, 228 (2005), 187.  doi: 10.1016/j.nimb.2004.10.043.  Google Scholar

[10]

V. I. Dubinko, and V. P. Lebedev, Investigation of the electroplastic effect under sub-threshold electron irradiation,, Report STCU 4368-T03, (2009), 1.   Google Scholar

[11]

V. I. Dubinko and A. A. Turkin, Self-organization of cavities under irradiation,, Appl. Phys. A, 58 (1994), 21.  doi: 10.1007/BF00331513.  Google Scholar

[12]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Effect of the radiation-induced emission of Schottky defects on the formation of colloids in alkali halides,, Radiat. Eff. and Defects in Solids, 158 (2003), 705.  doi: 10.1080/1042015031000112531.  Google Scholar

[13]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations,, Nucl. and Methods in Physics Research B, 228 (2005), 304.  doi: 10.1016/j.nimb.2004.10.061.  Google Scholar

[14]

J. H. Evans, Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation,, Phil Mag., 85 (2005), 1177.  doi: 10.1080/14786430512331325606.  Google Scholar

[15]

J. H. Evans, Comments on the role of 1-D and 2-D self-interstitial atom transport mechanisms in void- and bubble-lattice formation in cubic metals,, Phil. Mag. Letters, 87 (2007), 575.  doi: 10.1080/09500830701393148.  Google Scholar

[16]

S. Flach and A. V. Gorbach, Discrete breathers - Advances in theory and applications,, Phys. Rep., 467 (2008), 1.  doi: 10.1016/j.physrep.2008.05.002.  Google Scholar

[17]

W. Jager and H. Trinkaus, Defect ordering in metals under irradiation,, J. Nucl. Mater., 205 (1993), 394.  doi: 10.1016/0022-3115(93)90104-7.  Google Scholar

[18]

N. P. Lazarev and V. I. Dubinko, Molecular dynamics simulation of defects production in the vicinity of voids,, Radiat. Eff. and Defects in Solids, 158 (2003), 803.  doi: 10.1080/10420150310001631084.  Google Scholar

[19]

M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet and A. Alatas, Intrinsic localized modes observed in the high temperature vibrational spectrum of NaI,, Phys. Rev. B, 79 (2009), 134304.  doi: 10.1103/PhysRevB.79.134304.  Google Scholar

[20]

R. S. Nelson and M. W. Tompson, Atomic collision sequences in crystals of copper, silver and gold revealed by sputtering in energetic ion beams,, Proc. Roy. Soc., 259 (1960), 458.   Google Scholar

[21]

V. F. Petrenko, N. N. Khusnatdinov and I. Baker, Effect of X radiation on the plastic deformation of II-VI compounds,, Phys. Rev. B, 53 (1996), 15401.  doi: 10.1103/PhysRevB.53.15401.  Google Scholar

[22]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K,, Europhys. Lett, 78 (2007), 10004.  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[23]

R. H. Silsbee, Focusing in collision problems in solids,, J. Appl. Phys., 28 (1957), 1246.  doi: 10.1063/1.1722626.  Google Scholar

[24]

C. H. Woo and W. Frank, A theory of void-lattice formation,, J. Nucl. Mater., 137 (1985), 7.  doi: 10.1016/0022-3115(85)90044-3.  Google Scholar

[1]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[2]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]