October  2011, 4(5): 1119-1128. doi: 10.3934/dcdss.2011.4.1119

Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects

1. 

NSC Kharkov Institute of Physics and Technology, Akademicheskaya Str.1, Kharkov 61108, Ukraine

Received  September 2009 Revised  November 2009 Published  December 2010

A majority of radiation effects studies are connected with creation of radiation-induced defects in the crystal bulk, which causes the observed degradation of material properties, called radiation damage. In the present paper we consider mechanisms of recovery of the radiation damage, based on the radiation-induced formation of quodons (energetic, mobile, highly localized lattice excitations that propagate great distances along close-packed crystal directions) and their interaction with crystal defects such as voids and dislocations. The rate theory of microstructure evolution in solids modified with account of quodon-induced reactions is applied for description of the radiation-induced annealing of voids observed under low temperature ion irradiation of nickel. Comparison of the theory with experimental data is used for a quantitative estimation of the propagation range of quodons in metals. Some other related phenomena in radiation physics of crystals are discussed, which include the void lattice formation and electron-plastic effect.
Citation: Vladimir Dubinko. Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1119-1128. doi: 10.3934/dcdss.2011.4.1119
References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen, Phys. Rev. Lett., 96 (2006), 065901-1-065901-4. doi: 10.1103/PhysRevLett.96.065901.

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures, J. Phys. Chem. B, 110 (2006), 24112-24120. doi: 10.1021/jp0631228.

[3]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration, Phys. Lett. A, 315 (2003), 364-371. doi: 10.1016/S0375-9601(03)01097-1.

[4]

V. I. Dubinko, New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations, Radiat. Eff. and Defects in Solids, 160 (2005), 85-97. doi: 10.1080/10420150500132190.

[5]

V. I. Dubinko, Breather mechanism of the void ordering in crystals under irradiation, Nucl. and Methods in Physics Research B, 267 (2009), 2976-2979.

[6]

V. I. Dubinko and A.G. Guglya, Investigation of the void and dislocation loop formation and dissolution under ion and sub-threshold electron irradiation, Report STCU 4368-T02, (2009), 1-21.

[7]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling, J. Nucl. Mater., 385 (2009), 228-230. doi: 10.1016/j.jnucmat.2008.11.028.

[8]

V. I. Dubinko and V. F. Klepikov, The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation, J. Nucl. Mater., 362 (2007), 146-151. doi: 10.1016/j.jnucmat.2007.01.018.

[9]

V. I. Dubinko and N. P. Lazarev, Effect of the radiation-induced vacancy emission from voids on the void evolution, Nucl. and Methods in Physics Research B, 228 (2005), 187-192. doi: 10.1016/j.nimb.2004.10.043.

[10]

V. I. Dubinko, and V. P. Lebedev, Investigation of the electroplastic effect under sub-threshold electron irradiation, Report STCU 4368-T03, (2009), 1-22.

[11]

V. I. Dubinko and A. A. Turkin, Self-organization of cavities under irradiation, Appl. Phys. A, 58 (1994), 21-34. doi: 10.1007/BF00331513.

[12]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Effect of the radiation-induced emission of Schottky defects on the formation of colloids in alkali halides, Radiat. Eff. and Defects in Solids, 158 (2003), 705-719. doi: 10.1080/1042015031000112531.

[13]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations, Nucl. and Methods in Physics Research B, 228 (2005), 304-308. doi: 10.1016/j.nimb.2004.10.061.

[14]

J. H. Evans, Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation, Phil Mag., 85 (2005), 1177-1190. doi: 10.1080/14786430512331325606.

[15]

J. H. Evans, Comments on the role of 1-D and 2-D self-interstitial atom transport mechanisms in void- and bubble-lattice formation in cubic metals, Phil. Mag. Letters, 87 (2007), 575-580. doi: 10.1080/09500830701393148.

[16]

S. Flach and A. V. Gorbach, Discrete breathers - Advances in theory and applications, Phys. Rep., 467 (2008), 1-116. doi: 10.1016/j.physrep.2008.05.002.

[17]

W. Jager and H. Trinkaus, Defect ordering in metals under irradiation, J. Nucl. Mater., 205 (1993), 394-410. doi: 10.1016/0022-3115(93)90104-7.

[18]

N. P. Lazarev and V. I. Dubinko, Molecular dynamics simulation of defects production in the vicinity of voids, Radiat. Eff. and Defects in Solids, 158 (2003), 803-810. doi: 10.1080/10420150310001631084.

[19]

M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet and A. Alatas, Intrinsic localized modes observed in the high temperature vibrational spectrum of NaI, Phys. Rev. B, 79 (2009), 134304-134309. doi: 10.1103/PhysRevB.79.134304.

[20]

R. S. Nelson and M. W. Tompson, Atomic collision sequences in crystals of copper, silver and gold revealed by sputtering in energetic ion beams, Proc. Roy. Soc., 259 (1960), 458-479.

[21]

V. F. Petrenko, N. N. Khusnatdinov and I. Baker, Effect of X radiation on the plastic deformation of II-VI compounds, Phys. Rev. B, 53 (1996), 15401-15404. doi: 10.1103/PhysRevB.53.15401.

[22]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K, Europhys. Lett, 78 (2007), 10004-10011. doi: 10.1209/0295-5075/78/10004.

[23]

R. H. Silsbee, Focusing in collision problems in solids, J. Appl. Phys., 28 (1957), 1246-1250. doi: 10.1063/1.1722626.

[24]

C. H. Woo and W. Frank, A theory of void-lattice formation, J. Nucl. Mater., 137 (1985), 7-21. doi: 10.1016/0022-3115(85)90044-3.

show all references

References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen, Phys. Rev. Lett., 96 (2006), 065901-1-065901-4. doi: 10.1103/PhysRevLett.96.065901.

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures, J. Phys. Chem. B, 110 (2006), 24112-24120. doi: 10.1021/jp0631228.

[3]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration, Phys. Lett. A, 315 (2003), 364-371. doi: 10.1016/S0375-9601(03)01097-1.

[4]

V. I. Dubinko, New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations, Radiat. Eff. and Defects in Solids, 160 (2005), 85-97. doi: 10.1080/10420150500132190.

[5]

V. I. Dubinko, Breather mechanism of the void ordering in crystals under irradiation, Nucl. and Methods in Physics Research B, 267 (2009), 2976-2979.

[6]

V. I. Dubinko and A.G. Guglya, Investigation of the void and dislocation loop formation and dissolution under ion and sub-threshold electron irradiation, Report STCU 4368-T02, (2009), 1-21.

[7]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling, J. Nucl. Mater., 385 (2009), 228-230. doi: 10.1016/j.jnucmat.2008.11.028.

[8]

V. I. Dubinko and V. F. Klepikov, The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation, J. Nucl. Mater., 362 (2007), 146-151. doi: 10.1016/j.jnucmat.2007.01.018.

[9]

V. I. Dubinko and N. P. Lazarev, Effect of the radiation-induced vacancy emission from voids on the void evolution, Nucl. and Methods in Physics Research B, 228 (2005), 187-192. doi: 10.1016/j.nimb.2004.10.043.

[10]

V. I. Dubinko, and V. P. Lebedev, Investigation of the electroplastic effect under sub-threshold electron irradiation, Report STCU 4368-T03, (2009), 1-22.

[11]

V. I. Dubinko and A. A. Turkin, Self-organization of cavities under irradiation, Appl. Phys. A, 58 (1994), 21-34. doi: 10.1007/BF00331513.

[12]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Effect of the radiation-induced emission of Schottky defects on the formation of colloids in alkali halides, Radiat. Eff. and Defects in Solids, 158 (2003), 705-719. doi: 10.1080/1042015031000112531.

[13]

V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations, Nucl. and Methods in Physics Research B, 228 (2005), 304-308. doi: 10.1016/j.nimb.2004.10.061.

[14]

J. H. Evans, Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation, Phil Mag., 85 (2005), 1177-1190. doi: 10.1080/14786430512331325606.

[15]

J. H. Evans, Comments on the role of 1-D and 2-D self-interstitial atom transport mechanisms in void- and bubble-lattice formation in cubic metals, Phil. Mag. Letters, 87 (2007), 575-580. doi: 10.1080/09500830701393148.

[16]

S. Flach and A. V. Gorbach, Discrete breathers - Advances in theory and applications, Phys. Rep., 467 (2008), 1-116. doi: 10.1016/j.physrep.2008.05.002.

[17]

W. Jager and H. Trinkaus, Defect ordering in metals under irradiation, J. Nucl. Mater., 205 (1993), 394-410. doi: 10.1016/0022-3115(93)90104-7.

[18]

N. P. Lazarev and V. I. Dubinko, Molecular dynamics simulation of defects production in the vicinity of voids, Radiat. Eff. and Defects in Solids, 158 (2003), 803-810. doi: 10.1080/10420150310001631084.

[19]

M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet and A. Alatas, Intrinsic localized modes observed in the high temperature vibrational spectrum of NaI, Phys. Rev. B, 79 (2009), 134304-134309. doi: 10.1103/PhysRevB.79.134304.

[20]

R. S. Nelson and M. W. Tompson, Atomic collision sequences in crystals of copper, silver and gold revealed by sputtering in energetic ion beams, Proc. Roy. Soc., 259 (1960), 458-479.

[21]

V. F. Petrenko, N. N. Khusnatdinov and I. Baker, Effect of X radiation on the plastic deformation of II-VI compounds, Phys. Rev. B, 53 (1996), 15401-15404. doi: 10.1103/PhysRevB.53.15401.

[22]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K, Europhys. Lett, 78 (2007), 10004-10011. doi: 10.1209/0295-5075/78/10004.

[23]

R. H. Silsbee, Focusing in collision problems in solids, J. Appl. Phys., 28 (1957), 1246-1250. doi: 10.1063/1.1722626.

[24]

C. H. Woo and W. Frank, A theory of void-lattice formation, J. Nucl. Mater., 137 (1985), 7-21. doi: 10.1016/0022-3115(85)90044-3.

[1]

Qingxu Dou, Jesús Cuevas, J. C. Eilbeck, Francis Michael Russell. Breathers and kinks in a simulated crystal experiment. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1107-1118. doi: 10.3934/dcdss.2011.4.1107

[2]

Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136

[3]

Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719

[4]

Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227

[5]

Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389

[6]

Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057

[7]

Gilles Pijaudier-Cabot, David Grégoire. A review of non local continuum damage: Modelling of failure?. Networks and Heterogeneous Media, 2014, 9 (4) : 575-597. doi: 10.3934/nhm.2014.9.575

[8]

Gianni Dal Maso, Flaviana Iurlano. Fracture models as $\Gamma$-limits of damage models. Communications on Pure and Applied Analysis, 2013, 12 (4) : 1657-1686. doi: 10.3934/cpaa.2013.12.1657

[9]

Alexander Mielke. Complete-damage evolution based on energies and stresses. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 423-439. doi: 10.3934/dcdss.2011.4.423

[10]

Marita Thomas. Quasistatic damage evolution with spatial $\mathrm{BV}$-regularization. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 235-255. doi: 10.3934/dcdss.2013.6.235

[11]

Yachun Li, Shengguo Zhu. Existence results for compressible radiation hydrodynamic equations with vacuum. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1023-1052. doi: 10.3934/cpaa.2015.14.1023

[12]

Guillaume Ferriere. The focusing logarithmic Schrödinger equation: Analysis of breathers and nonlinear superposition. Discrete and Continuous Dynamical Systems, 2020, 40 (11) : 6247-6274. doi: 10.3934/dcds.2020277

[13]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[14]

Danthai Thongphiew, Vira Chankong, Fang-Fang Yin, Q. Jackie Wu. An on-line adaptive radiation therapy system for intensity modulated radiation therapy: An application of multi-objective optimization. Journal of Industrial and Management Optimization, 2008, 4 (3) : 453-475. doi: 10.3934/jimo.2008.4.453

[15]

Leszek Gasiński, Piotr Kalita. On dynamic contact problem with generalized Coulomb friction, normal compliance and damage. Evolution Equations and Control Theory, 2020, 9 (4) : 1009-1026. doi: 10.3934/eect.2020049

[16]

Riccarda Rossi. Existence results for a coupled viscoplastic-damage model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1413-1466. doi: 10.3934/dcdss.2017075

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[18]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulations of a frictional contact problem with damage and memory. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021037

[19]

Amin Boumenir, Vu Kim Tuan. Recovery of the heat coefficient by two measurements. Inverse Problems and Imaging, 2011, 5 (4) : 775-791. doi: 10.3934/ipi.2011.5.775

[20]

Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic and Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]