\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects

Abstract Related Papers Cited by
  • A majority of radiation effects studies are connected with creation of radiation-induced defects in the crystal bulk, which causes the observed degradation of material properties, called radiation damage. In the present paper we consider mechanisms of recovery of the radiation damage, based on the radiation-induced formation of quodons (energetic, mobile, highly localized lattice excitations that propagate great distances along close-packed crystal directions) and their interaction with crystal defects such as voids and dislocations. The rate theory of microstructure evolution in solids modified with account of quodon-induced reactions is applied for description of the radiation-induced annealing of voids observed under low temperature ion irradiation of nickel. Comparison of the theory with experimental data is used for a quantitative estimation of the propagation range of quodons in metals. Some other related phenomena in radiation physics of crystals are discussed, which include the void lattice formation and electron-plastic effect.
    Mathematics Subject Classification: Primary: 35Q51; Secondary: 34A34.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen, Phys. Rev. Lett., 96 (2006), 065901-1-065901-4.doi: 10.1103/PhysRevLett.96.065901.

    [2]

    J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures, J. Phys. Chem. B, 110 (2006), 24112-24120.doi: 10.1021/jp0631228.

    [3]

    J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration, Phys. Lett. A, 315 (2003), 364-371.doi: 10.1016/S0375-9601(03)01097-1.

    [4]

    V. I. Dubinko, New mechanism of irradiation creep based on the radiation-induced vacancy emission from dislocations, Radiat. Eff. and Defects in Solids, 160 (2005), 85-97.doi: 10.1080/10420150500132190.

    [5]

    V. I. Dubinko, Breather mechanism of the void ordering in crystals under irradiation, Nucl. and Methods in Physics Research B, 267 (2009), 2976-2979.

    [6]

    V. I. Dubinko and A.G. Guglya, Investigation of the void and dislocation loop formation and dissolution under ion and sub-threshold electron irradiation, Report STCU 4368-T02, (2009), 1-21.

    [7]

    V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling, J. Nucl. Mater., 385 (2009), 228-230.doi: 10.1016/j.jnucmat.2008.11.028.

    [8]

    V. I. Dubinko and V. F. Klepikov, The influence of non-equilibrium fluctuations on radiation damage and recovery of metals under irradiation, J. Nucl. Mater., 362 (2007), 146-151.doi: 10.1016/j.jnucmat.2007.01.018.

    [9]

    V. I. Dubinko and N. P. Lazarev, Effect of the radiation-induced vacancy emission from voids on the void evolution, Nucl. and Methods in Physics Research B, 228 (2005), 187-192.doi: 10.1016/j.nimb.2004.10.043.

    [10]

    V. I. Dubinko, and V. P. Lebedev, Investigation of the electroplastic effect under sub-threshold electron irradiation, Report STCU 4368-T03, (2009), 1-22.

    [11]

    V. I. Dubinko and A. A. Turkin, Self-organization of cavities under irradiation, Appl. Phys. A, 58 (1994), 21-34.doi: 10.1007/BF00331513.

    [12]

    V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Effect of the radiation-induced emission of Schottky defects on the formation of colloids in alkali halides, Radiat. Eff. and Defects in Solids, 158 (2003), 705-719.doi: 10.1080/1042015031000112531.

    [13]

    V. I. Dubinko, D. I. Vainshtein and H. W. den Hartog, Mechanism of void growth in irradiated NaCl based on exiton-induced formation of divacancies at dislocations, Nucl. and Methods in Physics Research B, 228 (2005), 304-308.doi: 10.1016/j.nimb.2004.10.061.

    [14]

    J. H. Evans, Simulations of the effects of 1-d interstitial diffusion on void lattice formation during irradiation, Phil Mag., 85 (2005), 1177-1190.doi: 10.1080/14786430512331325606.

    [15]

    J. H. Evans, Comments on the role of 1-D and 2-D self-interstitial atom transport mechanisms in void- and bubble-lattice formation in cubic metals, Phil. Mag. Letters, 87 (2007), 575-580.doi: 10.1080/09500830701393148.

    [16]

    S. Flach and A. V. Gorbach, Discrete breathers - Advances in theory and applications, Phys. Rep., 467 (2008), 1-116.doi: 10.1016/j.physrep.2008.05.002.

    [17]

    W. Jager and H. Trinkaus, Defect ordering in metals under irradiation, J. Nucl. Mater., 205 (1993), 394-410.doi: 10.1016/0022-3115(93)90104-7.

    [18]

    N. P. Lazarev and V. I. Dubinko, Molecular dynamics simulation of defects production in the vicinity of voids, Radiat. Eff. and Defects in Solids, 158 (2003), 803-810.doi: 10.1080/10420150310001631084.

    [19]

    M. E. Manley, A. J. Sievers, J. W. Lynn, S. A. Kiselev, N. I. Agladze, Y. Chen, A. Llobet and A. Alatas, Intrinsic localized modes observed in the high temperature vibrational spectrum of NaI, Phys. Rev. B, 79 (2009), 134304-134309.doi: 10.1103/PhysRevB.79.134304.

    [20]

    R. S. Nelson and M. W. Tompson, Atomic collision sequences in crystals of copper, silver and gold revealed by sputtering in energetic ion beams, Proc. Roy. Soc., 259 (1960), 458-479.

    [21]

    V. F. Petrenko, N. N. Khusnatdinov and I. Baker, Effect of X radiation on the plastic deformation of II-VI compounds, Phys. Rev. B, 53 (1996), 15401-15404.doi: 10.1103/PhysRevB.53.15401.

    [22]

    F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300 K, Europhys. Lett, 78 (2007), 10004-10011.doi: 10.1209/0295-5075/78/10004.

    [23]

    R. H. Silsbee, Focusing in collision problems in solids, J. Appl. Phys., 28 (1957), 1246-1250.doi: 10.1063/1.1722626.

    [24]

    C. H. Woo and W. Frank, A theory of void-lattice formation, J. Nucl. Mater., 137 (1985), 7-21.doi: 10.1016/0022-3115(85)90044-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(50) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return