-
Previous Article
Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments
- DCDS-S Home
- This Issue
-
Next Article
Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects
Travelling waves of forced discrete nonlinear Schrödinger equations
1. | Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava |
2. | School of Mathematics, Physics and Computational Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece |
References:
[1] |
M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Comm Pure Appl. Analysis, 7 (2008), 211.
|
[2] |
S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization,, Physica D, 103 (1997), 201.
doi: 10.1016/S0167-2789(96)00261-8. |
[3] |
D. Cai, A. Sánchez, A. R. Bishop, F. Falo and L. M. Floría, Possible soliton motion in ac-driven damped nonlinear lattices,, Phys. Rev. B, 50 (1994), 9652.
doi: 10.1103/PhysRevB.50.9652. |
[4] |
R. Carretero-González, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Three-dimensional nonlinear lattices: from oblique vortices and octupoles to discrete diamonds and vortex cubes,, Phys. Rev. Lett., 94 (2005).
doi: 10.1103/PhysRevLett.94.203901. |
[5] |
C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126.
doi: 10.1016/j.physd.2008.10.002. |
[6] |
D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices,, Nature, 424 (2003), 817.
doi: 10.1038/nature01936. |
[7] |
M. Fečkan, Nontrivial critical points of asymptotically quadratic functions at resonance,, Ann. Polonici Math., 67 (1997), 43.
|
[8] |
M. Fečkan and V. M. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions,, Appl. Anal., 89 (2010), 1387.
doi: 10.1080/00036810903208130. |
[9] |
M. Fečkan and V. M. Rothos, Travelling waves in Hamiltonian systems on 2d lattices with nearest neighbor interactions,, Nonlinearity, 20 (2007), 319.
doi: 10.1088/0951-7715/20/2/005. |
[10] |
J. Garnier, F. K. Abdullaev and M. Salerno, Solitons in strongly driven discrete nonlinear Schrödinger-type models,, Phys. Rev. E, 75 (2007).
doi: 10.1103/PhysRevE.75.016615. |
[11] |
J. Gómez-Gardeñes, L. M. Floría and A. R. Bishop, Discrete breathers in two-dimensional anisotropic nonlinear Schrödinger lattices,, Physica D, 216 (2006), 31.
|
[12] |
N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.
doi: 10.1016/j.jde.2005.06.002. |
[13] |
P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension,, SIAM J. Math. Anal., 41 (2009), 2010.
doi: 10.1137/080737654. |
[14] |
P. G. Kevrekidis, K.Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.
doi: 10.1142/S0217979201007105. |
[15] |
R. Khomeriki, S. Lepri and S. Ruffo, Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice,, Phys. Rev. E, 64 (2001).
doi: 10.1103/PhysRevE.64.056606. |
[16] |
M. Kollmann, H. W. Capel and T. Bountis, Breathers and multibreathers in a periodically driven damped discrete nonlinear Schrödinger equation,, Phys. Rev. E, 60 (1999), 1195.
doi: 10.1103/PhysRevE.60.1195. |
[17] |
S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system,, J. Differential Equations, 78 (1989), 53.
doi: 10.1016/0022-0396(89)90075-2. |
[18] |
S. Li and A. Szulkin, Periodic solutions for a class of nonautonomous Hamiltonian systems,, J. Differential Equations, 112 (1994), 226.
doi: 10.1006/jdeq.1994.1102. |
[19] |
D. Mandelik, R. Morandotti, J. S. Aitchison and Y. Silberberg, Gap solitons in waveguide arrays,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.093904. |
[20] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).
|
[21] |
T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schrödinger lattices,, Phys. Rev. Lett., 97 (2006).
doi: 10.1103/PhysRevLett.97.124101. |
[22] |
T. R. O. Melvin, A. R. Champneys and D. E. Pelinovsky, Discrete traveling solitons in the Salerno model,, SIAM J. Appl. Dyn. Syst., 8 (2009), 689.
doi: 10.1137/080715408. |
[23] |
R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Dynamics of discrete solitons in optical waveguide arrays,, Phys. Rev. Lett., 83 (1999), 2726.
doi: 10.1103/PhysRevLett.83.2726. |
[24] |
D. E. Pelinovsky, T. R. O. Melvin and A. R. Champneys, One-parameter localized traveling waves in nonlinear Schrödinger lattices,, Physica D, 236 (2007), 22.
doi: 10.1016/j.physd.2007.07.010. |
[25] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. Math., 65 (1986).
|
[26] |
K. Ø. Rasmussen, B. A. Malomed, A. R. Bishop and N. Grønbech-Jensen, Soliton motion in a parametrically ac-driven damped Toda lattice,, Phys. Rev. E, 58 (1998), 6695.
doi: 10.1103/PhysRevE.58.6695. |
[27] |
M. Syafwan, H. Susanto and S. M. Cox, Discrete solitons in electromechanical resonators,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.026207. |
[28] |
A. Vanossi, K. Ø. Rasmussen, A. R. Bishop, B. A. Malomed and V. Bortolani, Spontaneous pattern formation in driven nonlinear lattices,, Phys. Rev. E, 62 (2000), 7353.
doi: 10.1103/PhysRevE.62.7353. |
[29] |
Y. Zolotaryuk and M. Salerno, Discrete soliton ratchets driven by biharmonic fields,, Phys. Rev. E, 73 (2006).
doi: 10.1103/PhysRevE.73.066621. |
[30] |
A. V. Yulin and A. R. Champneys, Discrete snaking: multiple cavity solitons in saturable media,, SIAM J. Appl. Dyn. Syst., 9 (2010), 391.
doi: 10.1137/080734297. |
[31] |
A. V. Yulin, A. R. Champneys and D. V. Skryabin, Discrete cavity solitons due to saturable nonlinearity,, Phys. Rev. A, 78 (2008).
doi: 10.1103/PhysRevA.78.011804. |
show all references
References:
[1] |
M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Comm Pure Appl. Analysis, 7 (2008), 211.
|
[2] |
S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization,, Physica D, 103 (1997), 201.
doi: 10.1016/S0167-2789(96)00261-8. |
[3] |
D. Cai, A. Sánchez, A. R. Bishop, F. Falo and L. M. Floría, Possible soliton motion in ac-driven damped nonlinear lattices,, Phys. Rev. B, 50 (1994), 9652.
doi: 10.1103/PhysRevB.50.9652. |
[4] |
R. Carretero-González, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Three-dimensional nonlinear lattices: from oblique vortices and octupoles to discrete diamonds and vortex cubes,, Phys. Rev. Lett., 94 (2005).
doi: 10.1103/PhysRevLett.94.203901. |
[5] |
C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126.
doi: 10.1016/j.physd.2008.10.002. |
[6] |
D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices,, Nature, 424 (2003), 817.
doi: 10.1038/nature01936. |
[7] |
M. Fečkan, Nontrivial critical points of asymptotically quadratic functions at resonance,, Ann. Polonici Math., 67 (1997), 43.
|
[8] |
M. Fečkan and V. M. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions,, Appl. Anal., 89 (2010), 1387.
doi: 10.1080/00036810903208130. |
[9] |
M. Fečkan and V. M. Rothos, Travelling waves in Hamiltonian systems on 2d lattices with nearest neighbor interactions,, Nonlinearity, 20 (2007), 319.
doi: 10.1088/0951-7715/20/2/005. |
[10] |
J. Garnier, F. K. Abdullaev and M. Salerno, Solitons in strongly driven discrete nonlinear Schrödinger-type models,, Phys. Rev. E, 75 (2007).
doi: 10.1103/PhysRevE.75.016615. |
[11] |
J. Gómez-Gardeñes, L. M. Floría and A. R. Bishop, Discrete breathers in two-dimensional anisotropic nonlinear Schrödinger lattices,, Physica D, 216 (2006), 31.
|
[12] |
N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.
doi: 10.1016/j.jde.2005.06.002. |
[13] |
P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension,, SIAM J. Math. Anal., 41 (2009), 2010.
doi: 10.1137/080737654. |
[14] |
P. G. Kevrekidis, K.Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.
doi: 10.1142/S0217979201007105. |
[15] |
R. Khomeriki, S. Lepri and S. Ruffo, Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice,, Phys. Rev. E, 64 (2001).
doi: 10.1103/PhysRevE.64.056606. |
[16] |
M. Kollmann, H. W. Capel and T. Bountis, Breathers and multibreathers in a periodically driven damped discrete nonlinear Schrödinger equation,, Phys. Rev. E, 60 (1999), 1195.
doi: 10.1103/PhysRevE.60.1195. |
[17] |
S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system,, J. Differential Equations, 78 (1989), 53.
doi: 10.1016/0022-0396(89)90075-2. |
[18] |
S. Li and A. Szulkin, Periodic solutions for a class of nonautonomous Hamiltonian systems,, J. Differential Equations, 112 (1994), 226.
doi: 10.1006/jdeq.1994.1102. |
[19] |
D. Mandelik, R. Morandotti, J. S. Aitchison and Y. Silberberg, Gap solitons in waveguide arrays,, Phys. Rev. Lett., 92 (2004).
doi: 10.1103/PhysRevLett.92.093904. |
[20] |
J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).
|
[21] |
T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schrödinger lattices,, Phys. Rev. Lett., 97 (2006).
doi: 10.1103/PhysRevLett.97.124101. |
[22] |
T. R. O. Melvin, A. R. Champneys and D. E. Pelinovsky, Discrete traveling solitons in the Salerno model,, SIAM J. Appl. Dyn. Syst., 8 (2009), 689.
doi: 10.1137/080715408. |
[23] |
R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Dynamics of discrete solitons in optical waveguide arrays,, Phys. Rev. Lett., 83 (1999), 2726.
doi: 10.1103/PhysRevLett.83.2726. |
[24] |
D. E. Pelinovsky, T. R. O. Melvin and A. R. Champneys, One-parameter localized traveling waves in nonlinear Schrödinger lattices,, Physica D, 236 (2007), 22.
doi: 10.1016/j.physd.2007.07.010. |
[25] |
P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. Math., 65 (1986).
|
[26] |
K. Ø. Rasmussen, B. A. Malomed, A. R. Bishop and N. Grønbech-Jensen, Soliton motion in a parametrically ac-driven damped Toda lattice,, Phys. Rev. E, 58 (1998), 6695.
doi: 10.1103/PhysRevE.58.6695. |
[27] |
M. Syafwan, H. Susanto and S. M. Cox, Discrete solitons in electromechanical resonators,, Phys. Rev. E, 81 (2010).
doi: 10.1103/PhysRevE.81.026207. |
[28] |
A. Vanossi, K. Ø. Rasmussen, A. R. Bishop, B. A. Malomed and V. Bortolani, Spontaneous pattern formation in driven nonlinear lattices,, Phys. Rev. E, 62 (2000), 7353.
doi: 10.1103/PhysRevE.62.7353. |
[29] |
Y. Zolotaryuk and M. Salerno, Discrete soliton ratchets driven by biharmonic fields,, Phys. Rev. E, 73 (2006).
doi: 10.1103/PhysRevE.73.066621. |
[30] |
A. V. Yulin and A. R. Champneys, Discrete snaking: multiple cavity solitons in saturable media,, SIAM J. Appl. Dyn. Syst., 9 (2010), 391.
doi: 10.1137/080734297. |
[31] |
A. V. Yulin, A. R. Champneys and D. V. Skryabin, Discrete cavity solitons due to saturable nonlinearity,, Phys. Rev. A, 78 (2008).
doi: 10.1103/PhysRevA.78.011804. |
[1] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020402 |
[2] |
Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298 |
[3] |
Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160 |
[4] |
Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247 |
[5] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[6] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[7] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[8] |
Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021022 |
[9] |
Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284 |
[10] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[11] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[12] |
Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020461 |
[13] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[14] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020450 |
[15] |
Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121 |
[16] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[17] |
Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002 |
[18] |
Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021008 |
[19] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[20] |
Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]