• Previous Article
    Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments
  • DCDS-S Home
  • This Issue
  • Next Article
    Mechanisms of recovery of radiation damage based on the interaction of quodons with crystal defects
October  2011, 4(5): 1129-1145. doi: 10.3934/dcdss.2011.4.1129

Travelling waves of forced discrete nonlinear Schrödinger equations

1. 

Department of Mathematical Analysis and Numerical Mathematics, Comenius University, Mlynská dolina, 842 48 Bratislava

2. 

School of Mathematics, Physics and Computational Sciences, Faculty of Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Received  September 2009 Revised  January 2010 Published  December 2010

We address the existence and bifurcation of periodic travelling wave solutions in forced spatially discrete nonlinear Schrödinger equations with local interactions. We consider polynomial type and bounded nonlinearities. The mathematical methods are based in using Palais-Smale conditions and variational methods. Some generalizations are also discussed.
Citation: Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129
References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Comm Pure Appl. Analysis, 7 (2008), 211.   Google Scholar

[2]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization,, Physica D, 103 (1997), 201.  doi: 10.1016/S0167-2789(96)00261-8.  Google Scholar

[3]

D. Cai, A. Sánchez, A. R. Bishop, F. Falo and L. M. Floría, Possible soliton motion in ac-driven damped nonlinear lattices,, Phys. Rev. B, 50 (1994), 9652.  doi: 10.1103/PhysRevB.50.9652.  Google Scholar

[4]

R. Carretero-González, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Three-dimensional nonlinear lattices: from oblique vortices and octupoles to discrete diamonds and vortex cubes,, Phys. Rev. Lett., 94 (2005).  doi: 10.1103/PhysRevLett.94.203901.  Google Scholar

[5]

C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126.  doi: 10.1016/j.physd.2008.10.002.  Google Scholar

[6]

D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices,, Nature, 424 (2003), 817.  doi: 10.1038/nature01936.  Google Scholar

[7]

M. Fečkan, Nontrivial critical points of asymptotically quadratic functions at resonance,, Ann. Polonici Math., 67 (1997), 43.   Google Scholar

[8]

M. Fečkan and V. M. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions,, Appl. Anal., 89 (2010), 1387.  doi: 10.1080/00036810903208130.  Google Scholar

[9]

M. Fečkan and V. M. Rothos, Travelling waves in Hamiltonian systems on 2d lattices with nearest neighbor interactions,, Nonlinearity, 20 (2007), 319.  doi: 10.1088/0951-7715/20/2/005.  Google Scholar

[10]

J. Garnier, F. K. Abdullaev and M. Salerno, Solitons in strongly driven discrete nonlinear Schrödinger-type models,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.016615.  Google Scholar

[11]

J. Gómez-Gardeñes, L. M. Floría and A. R. Bishop, Discrete breathers in two-dimensional anisotropic nonlinear Schrödinger lattices,, Physica D, 216 (2006), 31.   Google Scholar

[12]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[13]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension,, SIAM J. Math. Anal., 41 (2009), 2010.  doi: 10.1137/080737654.  Google Scholar

[14]

P. G. Kevrekidis, K.Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.  doi: 10.1142/S0217979201007105.  Google Scholar

[15]

R. Khomeriki, S. Lepri and S. Ruffo, Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.056606.  Google Scholar

[16]

M. Kollmann, H. W. Capel and T. Bountis, Breathers and multibreathers in a periodically driven damped discrete nonlinear Schrödinger equation,, Phys. Rev. E, 60 (1999), 1195.  doi: 10.1103/PhysRevE.60.1195.  Google Scholar

[17]

S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system,, J. Differential Equations, 78 (1989), 53.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

S. Li and A. Szulkin, Periodic solutions for a class of nonautonomous Hamiltonian systems,, J. Differential Equations, 112 (1994), 226.  doi: 10.1006/jdeq.1994.1102.  Google Scholar

[19]

D. Mandelik, R. Morandotti, J. S. Aitchison and Y. Silberberg, Gap solitons in waveguide arrays,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.093904.  Google Scholar

[20]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).   Google Scholar

[21]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schrödinger lattices,, Phys. Rev. Lett., 97 (2006).  doi: 10.1103/PhysRevLett.97.124101.  Google Scholar

[22]

T. R. O. Melvin, A. R. Champneys and D. E. Pelinovsky, Discrete traveling solitons in the Salerno model,, SIAM J. Appl. Dyn. Syst., 8 (2009), 689.  doi: 10.1137/080715408.  Google Scholar

[23]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Dynamics of discrete solitons in optical waveguide arrays,, Phys. Rev. Lett., 83 (1999), 2726.  doi: 10.1103/PhysRevLett.83.2726.  Google Scholar

[24]

D. E. Pelinovsky, T. R. O. Melvin and A. R. Champneys, One-parameter localized traveling waves in nonlinear Schrödinger lattices,, Physica D, 236 (2007), 22.  doi: 10.1016/j.physd.2007.07.010.  Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. Math., 65 (1986).   Google Scholar

[26]

K. Ø. Rasmussen, B. A. Malomed, A. R. Bishop and N. Grønbech-Jensen, Soliton motion in a parametrically ac-driven damped Toda lattice,, Phys. Rev. E, 58 (1998), 6695.  doi: 10.1103/PhysRevE.58.6695.  Google Scholar

[27]

M. Syafwan, H. Susanto and S. M. Cox, Discrete solitons in electromechanical resonators,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.026207.  Google Scholar

[28]

A. Vanossi, K. Ø. Rasmussen, A. R. Bishop, B. A. Malomed and V. Bortolani, Spontaneous pattern formation in driven nonlinear lattices,, Phys. Rev. E, 62 (2000), 7353.  doi: 10.1103/PhysRevE.62.7353.  Google Scholar

[29]

Y. Zolotaryuk and M. Salerno, Discrete soliton ratchets driven by biharmonic fields,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.066621.  Google Scholar

[30]

A. V. Yulin and A. R. Champneys, Discrete snaking: multiple cavity solitons in saturable media,, SIAM J. Appl. Dyn. Syst., 9 (2010), 391.  doi: 10.1137/080734297.  Google Scholar

[31]

A. V. Yulin, A. R. Champneys and D. V. Skryabin, Discrete cavity solitons due to saturable nonlinearity,, Phys. Rev. A, 78 (2008).  doi: 10.1103/PhysRevA.78.011804.  Google Scholar

show all references

References:
[1]

M. Abounouh, H. Al Moatassime, J. P. Chehab, S. Dumont and O. Goubet, Discrete Schrödinger equations and dissipative dynamical systems,, Comm Pure Appl. Analysis, 7 (2008), 211.   Google Scholar

[2]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization,, Physica D, 103 (1997), 201.  doi: 10.1016/S0167-2789(96)00261-8.  Google Scholar

[3]

D. Cai, A. Sánchez, A. R. Bishop, F. Falo and L. M. Floría, Possible soliton motion in ac-driven damped nonlinear lattices,, Phys. Rev. B, 50 (1994), 9652.  doi: 10.1103/PhysRevB.50.9652.  Google Scholar

[4]

R. Carretero-González, P. G. Kevrekidis, B. A. Malomed and D. J. Frantzeskakis, Three-dimensional nonlinear lattices: from oblique vortices and octupoles to discrete diamonds and vortex cubes,, Phys. Rev. Lett., 94 (2005).  doi: 10.1103/PhysRevLett.94.203901.  Google Scholar

[5]

C. Chong, R. Carretero-González, B. A. Malomed and P. G. Kevrekidis, Multistable solitons in higher-dimensional cubic-quintic nonlinear Schrödinger lattices,, Physica D, 238 (2009), 126.  doi: 10.1016/j.physd.2008.10.002.  Google Scholar

[6]

D. N. Christodoulides, F. Lederer and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices,, Nature, 424 (2003), 817.  doi: 10.1038/nature01936.  Google Scholar

[7]

M. Fečkan, Nontrivial critical points of asymptotically quadratic functions at resonance,, Ann. Polonici Math., 67 (1997), 43.   Google Scholar

[8]

M. Fečkan and V. M. Rothos, Traveling waves of discrete nonlinear Schrödinger equations with nonlocal interactions,, Appl. Anal., 89 (2010), 1387.  doi: 10.1080/00036810903208130.  Google Scholar

[9]

M. Fečkan and V. M. Rothos, Travelling waves in Hamiltonian systems on 2d lattices with nearest neighbor interactions,, Nonlinearity, 20 (2007), 319.  doi: 10.1088/0951-7715/20/2/005.  Google Scholar

[10]

J. Garnier, F. K. Abdullaev and M. Salerno, Solitons in strongly driven discrete nonlinear Schrödinger-type models,, Phys. Rev. E, 75 (2007).  doi: 10.1103/PhysRevE.75.016615.  Google Scholar

[11]

J. Gómez-Gardeñes, L. M. Floría and A. R. Bishop, Discrete breathers in two-dimensional anisotropic nonlinear Schrödinger lattices,, Physica D, 216 (2006), 31.   Google Scholar

[12]

N. I. Karachalios and A. N. Yannacopoulos, Global existence and compact attractors for the discrete nonlinear Schrödinger equation,, J. Differential Equations, 217 (2005), 88.  doi: 10.1016/j.jde.2005.06.002.  Google Scholar

[13]

P. G. Kevrekidis, D. E. Pelinovsky and A. Stefanov, Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation in one dimension,, SIAM J. Math. Anal., 41 (2009), 2010.  doi: 10.1137/080737654.  Google Scholar

[14]

P. G. Kevrekidis, K.Ø. Rasmussen and A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results,, Int. J. Mod. Phys. B, 15 (2001), 2833.  doi: 10.1142/S0217979201007105.  Google Scholar

[15]

R. Khomeriki, S. Lepri and S. Ruffo, Pattern formation and localization in the forced-damped Fermi-Pasta-Ulam lattice,, Phys. Rev. E, 64 (2001).  doi: 10.1103/PhysRevE.64.056606.  Google Scholar

[16]

M. Kollmann, H. W. Capel and T. Bountis, Breathers and multibreathers in a periodically driven damped discrete nonlinear Schrödinger equation,, Phys. Rev. E, 60 (1999), 1195.  doi: 10.1103/PhysRevE.60.1195.  Google Scholar

[17]

S. Li and J. Q. Liu, Morse theory and asymptotic linear Hamiltonian system,, J. Differential Equations, 78 (1989), 53.  doi: 10.1016/0022-0396(89)90075-2.  Google Scholar

[18]

S. Li and A. Szulkin, Periodic solutions for a class of nonautonomous Hamiltonian systems,, J. Differential Equations, 112 (1994), 226.  doi: 10.1006/jdeq.1994.1102.  Google Scholar

[19]

D. Mandelik, R. Morandotti, J. S. Aitchison and Y. Silberberg, Gap solitons in waveguide arrays,, Phys. Rev. Lett., 92 (2004).  doi: 10.1103/PhysRevLett.92.093904.  Google Scholar

[20]

J. Mawhin and M. Willem, "Critical Point Theory and Hamiltonian Systems,", Springer, (1989).   Google Scholar

[21]

T. R. O. Melvin, A. R. Champneys, P. G. Kevrekidis and J. Cuevas, Radiationless traveling waves in saturable nonlinear Schrödinger lattices,, Phys. Rev. Lett., 97 (2006).  doi: 10.1103/PhysRevLett.97.124101.  Google Scholar

[22]

T. R. O. Melvin, A. R. Champneys and D. E. Pelinovsky, Discrete traveling solitons in the Salerno model,, SIAM J. Appl. Dyn. Syst., 8 (2009), 689.  doi: 10.1137/080715408.  Google Scholar

[23]

R. Morandotti, U. Peschel, J. S. Aitchison, H. S. Eisenberg and Y. Silberberg, Dynamics of discrete solitons in optical waveguide arrays,, Phys. Rev. Lett., 83 (1999), 2726.  doi: 10.1103/PhysRevLett.83.2726.  Google Scholar

[24]

D. E. Pelinovsky, T. R. O. Melvin and A. R. Champneys, One-parameter localized traveling waves in nonlinear Schrödinger lattices,, Physica D, 236 (2007), 22.  doi: 10.1016/j.physd.2007.07.010.  Google Scholar

[25]

P. H. Rabinowitz, "Minimax Methods in Critical Point Theory with Applications to Differential Equations,", CBMS Reg. Conf. Ser. Math., 65 (1986).   Google Scholar

[26]

K. Ø. Rasmussen, B. A. Malomed, A. R. Bishop and N. Grønbech-Jensen, Soliton motion in a parametrically ac-driven damped Toda lattice,, Phys. Rev. E, 58 (1998), 6695.  doi: 10.1103/PhysRevE.58.6695.  Google Scholar

[27]

M. Syafwan, H. Susanto and S. M. Cox, Discrete solitons in electromechanical resonators,, Phys. Rev. E, 81 (2010).  doi: 10.1103/PhysRevE.81.026207.  Google Scholar

[28]

A. Vanossi, K. Ø. Rasmussen, A. R. Bishop, B. A. Malomed and V. Bortolani, Spontaneous pattern formation in driven nonlinear lattices,, Phys. Rev. E, 62 (2000), 7353.  doi: 10.1103/PhysRevE.62.7353.  Google Scholar

[29]

Y. Zolotaryuk and M. Salerno, Discrete soliton ratchets driven by biharmonic fields,, Phys. Rev. E, 73 (2006).  doi: 10.1103/PhysRevE.73.066621.  Google Scholar

[30]

A. V. Yulin and A. R. Champneys, Discrete snaking: multiple cavity solitons in saturable media,, SIAM J. Appl. Dyn. Syst., 9 (2010), 391.  doi: 10.1137/080734297.  Google Scholar

[31]

A. V. Yulin, A. R. Champneys and D. V. Skryabin, Discrete cavity solitons due to saturable nonlinearity,, Phys. Rev. A, 78 (2008).  doi: 10.1103/PhysRevA.78.011804.  Google Scholar

[1]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020402

[2]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[3]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[4]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

[9]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (2) : 651-680. doi: 10.3934/cpaa.2020284

[10]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[11]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[12]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[13]

Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159

[14]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[17]

Riadh Chteoui, Abdulrahman F. Aljohani, Anouar Ben Mabrouk. Classification and simulation of chaotic behaviour of the solutions of a mixed nonlinear Schrödinger system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021002

[18]

Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021008

[19]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[20]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]