October  2011, 4(5): 1147-1166. doi: 10.3934/dcdss.2011.4.1147

Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments

1. 

Institut de Mathématiques de Toulouse (UMR 5219), Département de Mathématiques, INSA-Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France

2. 

Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041 Grenoble Cedex 9, France

3. 

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France

Received  September 2009 Revised  January 2010 Published  December 2010

This paper is a first attempt to derive a qualitatively simple model coupling the dynamics of a charged biopolymer and its diffuse cloud of counterions. We consider here the case of a single actin filament. A zig-zag chain model introduced by Zolotaryuk et al [28] is used to represent the actin helix, and calibrated using experimental data on the stiffness constant of actin. Starting from the continuum drift-diffusion model describing counterion dynamics, we derive a discrete damped diffusion equation for the quantity of ionic charges in a one-dimensional grid along actin. The actin and ionic cloud models are coupled via electrostatic effects. Numerical simulations of the coupled system show that mechanical waves propagating along the polymer can generate charge density waves with intensities in the $pA$ range, in agreement with experimental measurements of ionic currents along actin.
Citation: Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147
References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics,, Proc. Natl. Acad Sci. USA, 103 (2006), 7962.  doi: 10.1073/pnas.0601435103.  Google Scholar

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683.  doi: 10.1016/j.crma.2004.09.025.  Google Scholar

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis,, Biophys. J., 68 (1995), 1231.  doi: 10.1016/S0006-3495(95)80299-7.  Google Scholar

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations,, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69.   Google Scholar

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics,, J. Biol. Chem., 266 (1991), 1.   Google Scholar

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain,, Journal of Computational Physics, 134 (1997), 108.  doi: 10.1006/jcph.1997.5676.  Google Scholar

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.106405.  Google Scholar

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation,, Biophys. J., 76 (1999), 1.  doi: 10.1016/S0006-3495(99)77173-0.  Google Scholar

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation,, J. Phys. Chem., 97 (1993), 3591.  doi: 10.1021/j100116a025.  Google Scholar

[10]

K. C. Holmes, et al., Atomic model of the actin filament,, Nature, 347 (1990), 44.  doi: 10.1038/347044a0.  Google Scholar

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role,, Phil. Trans. R. Soc. A, 363 (2005), 331.  doi: 10.1098/rsta.2004.1496.  Google Scholar

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962.  doi: 10.1073/pnas.91.26.12962.  Google Scholar

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines,, METMBS'00 International Conference, (2000), 77.   Google Scholar

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin,, Biophys. J., 65 (1993), 1371.  doi: 10.1016/S0006-3495(93)81188-3.  Google Scholar

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers,, Biophys. J., 83 (2002), 2705.  doi: 10.1016/S0006-3495(02)75280-6.  Google Scholar

[16]

T. Odijk, Stiff chains and filaments under tension,, Macromolecules, 28 (1995), 7016.  doi: 10.1021/ma00124a044.  Google Scholar

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order,, Biophys. J., 78 (2000), 2180.  doi: 10.1016/S0006-3495(00)76765-8.  Google Scholar

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra,, Eur. Phys. J. E., 24 (2007), 261.  doi: 10.1140/epje/i2007-10236-x.  Google Scholar

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004).  doi: 10.1088/0951-7715/17/2/R01.  Google Scholar

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, Journal of Biological Physics, 35 (2009), 73.  doi: 10.1007/s10867-009-9127-2.  Google Scholar

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules,, European Biophysics Journal, 34 (2005), 912.  doi: 10.1007/s00249-005-0461-4.  Google Scholar

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules,, Biophys. J., 90 (2006), 4639.  doi: 10.1529/biophysj.105.078915.  Google Scholar

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules,, EPL, 83 (2008).   Google Scholar

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics,, Phys. Lett. A, 193 (1994), 263.  doi: 10.1016/0375-9601(94)90594-0.  Google Scholar

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains,, Physics-Uspekhi, 42 (1999), 245.  doi: 10.1070/PU1999v042n03ABEH000539.  Google Scholar

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments,, Biophys. J., 86 (2004), 1890.   Google Scholar

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.016614.  Google Scholar

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure,, Phys. Rev. E, 54 (1996), 3881.  doi: 10.1103/PhysRevE.54.3881.  Google Scholar

show all references

References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics,, Proc. Natl. Acad Sci. USA, 103 (2006), 7962.  doi: 10.1073/pnas.0601435103.  Google Scholar

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683.  doi: 10.1016/j.crma.2004.09.025.  Google Scholar

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis,, Biophys. J., 68 (1995), 1231.  doi: 10.1016/S0006-3495(95)80299-7.  Google Scholar

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations,, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69.   Google Scholar

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics,, J. Biol. Chem., 266 (1991), 1.   Google Scholar

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain,, Journal of Computational Physics, 134 (1997), 108.  doi: 10.1006/jcph.1997.5676.  Google Scholar

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.106405.  Google Scholar

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation,, Biophys. J., 76 (1999), 1.  doi: 10.1016/S0006-3495(99)77173-0.  Google Scholar

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation,, J. Phys. Chem., 97 (1993), 3591.  doi: 10.1021/j100116a025.  Google Scholar

[10]

K. C. Holmes, et al., Atomic model of the actin filament,, Nature, 347 (1990), 44.  doi: 10.1038/347044a0.  Google Scholar

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role,, Phil. Trans. R. Soc. A, 363 (2005), 331.  doi: 10.1098/rsta.2004.1496.  Google Scholar

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962.  doi: 10.1073/pnas.91.26.12962.  Google Scholar

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines,, METMBS'00 International Conference, (2000), 77.   Google Scholar

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin,, Biophys. J., 65 (1993), 1371.  doi: 10.1016/S0006-3495(93)81188-3.  Google Scholar

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers,, Biophys. J., 83 (2002), 2705.  doi: 10.1016/S0006-3495(02)75280-6.  Google Scholar

[16]

T. Odijk, Stiff chains and filaments under tension,, Macromolecules, 28 (1995), 7016.  doi: 10.1021/ma00124a044.  Google Scholar

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order,, Biophys. J., 78 (2000), 2180.  doi: 10.1016/S0006-3495(00)76765-8.  Google Scholar

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra,, Eur. Phys. J. E., 24 (2007), 261.  doi: 10.1140/epje/i2007-10236-x.  Google Scholar

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004).  doi: 10.1088/0951-7715/17/2/R01.  Google Scholar

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, Journal of Biological Physics, 35 (2009), 73.  doi: 10.1007/s10867-009-9127-2.  Google Scholar

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules,, European Biophysics Journal, 34 (2005), 912.  doi: 10.1007/s00249-005-0461-4.  Google Scholar

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules,, Biophys. J., 90 (2006), 4639.  doi: 10.1529/biophysj.105.078915.  Google Scholar

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules,, EPL, 83 (2008).   Google Scholar

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics,, Phys. Lett. A, 193 (1994), 263.  doi: 10.1016/0375-9601(94)90594-0.  Google Scholar

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains,, Physics-Uspekhi, 42 (1999), 245.  doi: 10.1070/PU1999v042n03ABEH000539.  Google Scholar

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments,, Biophys. J., 86 (2004), 1890.   Google Scholar

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.016614.  Google Scholar

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure,, Phys. Rev. E, 54 (1996), 3881.  doi: 10.1103/PhysRevE.54.3881.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[3]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[4]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[5]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[12]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[13]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[16]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[19]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (0)

[Back to Top]