October  2011, 4(5): 1147-1166. doi: 10.3934/dcdss.2011.4.1147

Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments

1. 

Institut de Mathématiques de Toulouse (UMR 5219), Département de Mathématiques, INSA-Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France

2. 

Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041 Grenoble Cedex 9, France

3. 

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France

Received  September 2009 Revised  January 2010 Published  December 2010

This paper is a first attempt to derive a qualitatively simple model coupling the dynamics of a charged biopolymer and its diffuse cloud of counterions. We consider here the case of a single actin filament. A zig-zag chain model introduced by Zolotaryuk et al [28] is used to represent the actin helix, and calibrated using experimental data on the stiffness constant of actin. Starting from the continuum drift-diffusion model describing counterion dynamics, we derive a discrete damped diffusion equation for the quantity of ionic charges in a one-dimensional grid along actin. The actin and ionic cloud models are coupled via electrostatic effects. Numerical simulations of the coupled system show that mechanical waves propagating along the polymer can generate charge density waves with intensities in the $pA$ range, in agreement with experimental measurements of ionic currents along actin.
Citation: Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147
References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics, Proc. Natl. Acad Sci. USA, 103 (2006), 7962-7967. doi: 10.1073/pnas.0601435103.

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683-688. doi: 10.1016/j.crma.2004.09.025.

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis, Biophys. J., 68 (1995), 1231-1245. doi: 10.1016/S0006-3495(95)80299-7.

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69-73, arXiv:0805.0696v1.

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics, J. Biol. Chem., 266 (1991), 1-4.

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain, Journal of Computational Physics, 134 (1997), 108-121. doi: 10.1006/jcph.1997.5676.

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices, Phys. Rev. Lett., 93 (2004), 106405. doi: 10.1103/PhysRevLett.93.106405.

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation, Biophys. J., 76 (1999), 1-16. doi: 10.1016/S0006-3495(99)77173-0.

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 97 (1993), 3591-3600. doi: 10.1021/j100116a025.

[10]

K. C. Holmes, et al., Atomic model of the actin filament, Nature, 347 (1990), 44-49. doi: 10.1038/347044a0.

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role, Phil. Trans. R. Soc. A, 363 (2005), 331-355. doi: 10.1098/rsta.2004.1496.

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962-12966. doi: 10.1073/pnas.91.26.12962.

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines, METMBS'00 International Conference, (2000), 77-82.

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin, Biophys. J., 65 (1993), 1371-1378. doi: 10.1016/S0006-3495(93)81188-3.

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers, Biophys. J., 83 (2002), 2705-2715. doi: 10.1016/S0006-3495(02)75280-6.

[16]

T. Odijk, Stiff chains and filaments under tension, Macromolecules, 28 (1995), 7016-7018. doi: 10.1021/ma00124a044.

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order, Biophys. J., 78 (2000), 2180-2185. doi: 10.1016/S0006-3495(00)76765-8.

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra, Eur. Phys. J. E., 24 (2007), 261-269. doi: 10.1140/epje/i2007-10236-x.

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity, 17 (2004), R1-R40. doi: 10.1088/0951-7715/17/2/R01.

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing, Journal of Biological Physics, 35 (2009), 73-89. doi: 10.1007/s10867-009-9127-2.

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules, European Biophysics Journal, 34 (2005), 912-920. doi: 10.1007/s00249-005-0461-4.

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules, Biophys. J., 90 (2006), 4639-4643. doi: 10.1529/biophysj.105.078915.

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules, EPL, 83 (2008), 68004.

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics, Phys. Lett. A, 193 (1994), 263-266. doi: 10.1016/0375-9601(94)90594-0.

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains, Physics-Uspekhi, 42 (1999), 245-260. doi: 10.1070/PU1999v042n03ABEH000539.

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments, Biophys. J., 86 (2004), 1890-1903.

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA, Phys. Rev. E, 66 (2002), 016614. doi: 10.1103/PhysRevE.66.016614.

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure, Phys. Rev. E, 54 (1996), 3881-3894. doi: 10.1103/PhysRevE.54.3881.

show all references

References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics, Proc. Natl. Acad Sci. USA, 103 (2006), 7962-7967. doi: 10.1073/pnas.0601435103.

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683-688. doi: 10.1016/j.crma.2004.09.025.

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis, Biophys. J., 68 (1995), 1231-1245. doi: 10.1016/S0006-3495(95)80299-7.

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69-73, arXiv:0805.0696v1.

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics, J. Biol. Chem., 266 (1991), 1-4.

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain, Journal of Computational Physics, 134 (1997), 108-121. doi: 10.1006/jcph.1997.5676.

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices, Phys. Rev. Lett., 93 (2004), 106405. doi: 10.1103/PhysRevLett.93.106405.

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation, Biophys. J., 76 (1999), 1-16. doi: 10.1016/S0006-3495(99)77173-0.

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation, J. Phys. Chem., 97 (1993), 3591-3600. doi: 10.1021/j100116a025.

[10]

K. C. Holmes, et al., Atomic model of the actin filament, Nature, 347 (1990), 44-49. doi: 10.1038/347044a0.

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role, Phil. Trans. R. Soc. A, 363 (2005), 331-355. doi: 10.1098/rsta.2004.1496.

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962-12966. doi: 10.1073/pnas.91.26.12962.

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines, METMBS'00 International Conference, (2000), 77-82.

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin, Biophys. J., 65 (1993), 1371-1378. doi: 10.1016/S0006-3495(93)81188-3.

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers, Biophys. J., 83 (2002), 2705-2715. doi: 10.1016/S0006-3495(02)75280-6.

[16]

T. Odijk, Stiff chains and filaments under tension, Macromolecules, 28 (1995), 7016-7018. doi: 10.1021/ma00124a044.

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order, Biophys. J., 78 (2000), 2180-2185. doi: 10.1016/S0006-3495(00)76765-8.

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra, Eur. Phys. J. E., 24 (2007), 261-269. doi: 10.1140/epje/i2007-10236-x.

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA, Nonlinearity, 17 (2004), R1-R40. doi: 10.1088/0951-7715/17/2/R01.

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing, Journal of Biological Physics, 35 (2009), 73-89. doi: 10.1007/s10867-009-9127-2.

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules, European Biophysics Journal, 34 (2005), 912-920. doi: 10.1007/s00249-005-0461-4.

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules, Biophys. J., 90 (2006), 4639-4643. doi: 10.1529/biophysj.105.078915.

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules, EPL, 83 (2008), 68004.

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics, Phys. Lett. A, 193 (1994), 263-266. doi: 10.1016/0375-9601(94)90594-0.

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains, Physics-Uspekhi, 42 (1999), 245-260. doi: 10.1070/PU1999v042n03ABEH000539.

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments, Biophys. J., 86 (2004), 1890-1903.

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA, Phys. Rev. E, 66 (2002), 016614. doi: 10.1103/PhysRevE.66.016614.

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure, Phys. Rev. E, 54 (1996), 3881-3894. doi: 10.1103/PhysRevE.54.3881.

[1]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete and Continuous Dynamical Systems, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[2]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[3]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations and Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[4]

Clément Jourdana, Paola Pietra. A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures. Kinetic and Related Models, 2019, 12 (1) : 217-242. doi: 10.3934/krm.2019010

[5]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[6]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[7]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[8]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[9]

Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77

[10]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[11]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure and Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[12]

Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2627-2644. doi: 10.3934/cpaa.2013.12.2627

[13]

Luigi Barletti, Philipp Holzinger, Ansgar Jüngel. Formal derivation of quantum drift-diffusion equations with spin-orbit interaction. Kinetic and Related Models, 2022, 15 (2) : 257-282. doi: 10.3934/krm.2022007

[14]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[15]

Stéphanie Portet, Julien Arino. An in vivo intermediate filament assembly model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 117-134. doi: 10.3934/mbe.2009.6.117

[16]

Ning Wang, Zhi-Cheng Wang. Propagation dynamics of a nonlocal time-space periodic reaction-diffusion model with delay. Discrete and Continuous Dynamical Systems, 2022, 42 (4) : 1599-1646. doi: 10.3934/dcds.2021166

[17]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[18]

Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic and Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241

[19]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[20]

Shuo Zhang, Guo Lin. Propagation dynamics in a diffusive SIQR model for childhood diseases. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3241-3259. doi: 10.3934/dcdsb.2021183

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

[Back to Top]