October  2011, 4(5): 1147-1166. doi: 10.3934/dcdss.2011.4.1147

Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments

1. 

Institut de Mathématiques de Toulouse (UMR 5219), Département de Mathématiques, INSA-Toulouse, 135 avenue de Rangueil, 31077 Toulouse Cedex 4, France

2. 

Laboratoire Jean Kuntzmann, Université de Grenoble and CNRS, BP 53, 38041 Grenoble Cedex 9, France

3. 

Laboratoire de Physique, Ecole Normale Supérieure de Lyon, 46 allée d'Italie, 69364 Lyon Cedex 07, France

Received  September 2009 Revised  January 2010 Published  December 2010

This paper is a first attempt to derive a qualitatively simple model coupling the dynamics of a charged biopolymer and its diffuse cloud of counterions. We consider here the case of a single actin filament. A zig-zag chain model introduced by Zolotaryuk et al [28] is used to represent the actin helix, and calibrated using experimental data on the stiffness constant of actin. Starting from the continuum drift-diffusion model describing counterion dynamics, we derive a discrete damped diffusion equation for the quantity of ionic charges in a one-dimensional grid along actin. The actin and ionic cloud models are coupled via electrostatic effects. Numerical simulations of the coupled system show that mechanical waves propagating along the polymer can generate charge density waves with intensities in the $pA$ range, in agreement with experimental measurements of ionic currents along actin.
Citation: Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147
References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics,, Proc. Natl. Acad Sci. USA, 103 (2006), 7962.  doi: 10.1073/pnas.0601435103.  Google Scholar

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683.  doi: 10.1016/j.crma.2004.09.025.  Google Scholar

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis,, Biophys. J., 68 (1995), 1231.  doi: 10.1016/S0006-3495(95)80299-7.  Google Scholar

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations,, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69.   Google Scholar

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics,, J. Biol. Chem., 266 (1991), 1.   Google Scholar

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain,, Journal of Computational Physics, 134 (1997), 108.  doi: 10.1006/jcph.1997.5676.  Google Scholar

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.106405.  Google Scholar

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation,, Biophys. J., 76 (1999), 1.  doi: 10.1016/S0006-3495(99)77173-0.  Google Scholar

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation,, J. Phys. Chem., 97 (1993), 3591.  doi: 10.1021/j100116a025.  Google Scholar

[10]

K. C. Holmes, et al., Atomic model of the actin filament,, Nature, 347 (1990), 44.  doi: 10.1038/347044a0.  Google Scholar

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role,, Phil. Trans. R. Soc. A, 363 (2005), 331.  doi: 10.1098/rsta.2004.1496.  Google Scholar

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962.  doi: 10.1073/pnas.91.26.12962.  Google Scholar

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines,, METMBS'00 International Conference, (2000), 77.   Google Scholar

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin,, Biophys. J., 65 (1993), 1371.  doi: 10.1016/S0006-3495(93)81188-3.  Google Scholar

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers,, Biophys. J., 83 (2002), 2705.  doi: 10.1016/S0006-3495(02)75280-6.  Google Scholar

[16]

T. Odijk, Stiff chains and filaments under tension,, Macromolecules, 28 (1995), 7016.  doi: 10.1021/ma00124a044.  Google Scholar

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order,, Biophys. J., 78 (2000), 2180.  doi: 10.1016/S0006-3495(00)76765-8.  Google Scholar

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra,, Eur. Phys. J. E., 24 (2007), 261.  doi: 10.1140/epje/i2007-10236-x.  Google Scholar

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004).  doi: 10.1088/0951-7715/17/2/R01.  Google Scholar

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, Journal of Biological Physics, 35 (2009), 73.  doi: 10.1007/s10867-009-9127-2.  Google Scholar

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules,, European Biophysics Journal, 34 (2005), 912.  doi: 10.1007/s00249-005-0461-4.  Google Scholar

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules,, Biophys. J., 90 (2006), 4639.  doi: 10.1529/biophysj.105.078915.  Google Scholar

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules,, EPL, 83 (2008).   Google Scholar

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics,, Phys. Lett. A, 193 (1994), 263.  doi: 10.1016/0375-9601(94)90594-0.  Google Scholar

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains,, Physics-Uspekhi, 42 (1999), 245.  doi: 10.1070/PU1999v042n03ABEH000539.  Google Scholar

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments,, Biophys. J., 86 (2004), 1890.   Google Scholar

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.016614.  Google Scholar

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure,, Phys. Rev. E, 54 (1996), 3881.  doi: 10.1103/PhysRevE.54.3881.  Google Scholar

show all references

References:
[1]

T. E. Angelini, et al., Counterions between charged polymers exhibit liquid-like organization and dynamics,, Proc. Natl. Acad Sci. USA, 103 (2006), 7962.  doi: 10.1073/pnas.0601435103.  Google Scholar

[2]

N. Ben Abdallah, F. Méhats and N. Vauchelet, A note on the long time behavior for the drift-diffusion-Poisson system,, C. R. Acad. Sci. Paris Ser. I, 339 (2004), 683.  doi: 10.1016/j.crma.2004.09.025.  Google Scholar

[3]

D. ben-Avraham and M. Tirion, Dynamic and elastic properties of F-actin: A normal mode analysis,, Biophys. J., 68 (1995), 1231.  doi: 10.1016/S0006-3495(95)80299-7.  Google Scholar

[4]

L. A. Bulavin, S. N. Volkov, S. Yu. Kutuvy and S. M. Perepelytsya, Observation of the DNA ion-phosphate vibrations,, Proceedings of National Academy of Science of Ukraine, 11 (2007), 69.   Google Scholar

[5]

M.-F. Carlier, Actin: Protein structure and filament dynamics,, J. Biol. Chem., 266 (1991), 1.   Google Scholar

[6]

P. L. Christiansen, A. V. Savin and A. V. Zolotaryuk, Soliton analysis in complex molecular systems: A zig-zag chain,, Journal of Computational Physics, 134 (1997), 108.  doi: 10.1006/jcph.1997.5676.  Google Scholar

[7]

J. Edler, R. Pfister, V. Pouthier, C. Falvo and P. Hamm, Direct observation of self-trapped vibrational states in $\alpha$-helices,, Phys. Rev. Lett., 93 (2004).  doi: 10.1103/PhysRevLett.93.106405.  Google Scholar

[8]

F. Fogolari, P. Zuccato, G. Esposito and P. Viglino, Biomolecular electrostatics with the linearized Poisson-Boltzmann equation,, Biophys. J., 76 (1999), 1.  doi: 10.1016/S0006-3495(99)77173-0.  Google Scholar

[9]

M. K Gilson, M. E. Davis, B. A. Luty and J. A. McCammon, Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation,, J. Phys. Chem., 97 (1993), 3591.  doi: 10.1021/j100116a025.  Google Scholar

[10]

K. C. Holmes, et al., Atomic model of the actin filament,, Nature, 347 (1990), 44.  doi: 10.1038/347044a0.  Google Scholar

[11]

M. Karplus, Y. Q. Gao, J. Ma, A. van der Vaart and W. Yang, Protein structural transitions and their functional role,, Phil. Trans. R. Soc. A, 363 (2005), 331.  doi: 10.1098/rsta.2004.1496.  Google Scholar

[12]

H. Kojima, A.Ishijima and T.Yanagida, Direct measurements of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation,, Proc. Natl. Acad. Sci. USA, 91 (1994), 12962.  doi: 10.1073/pnas.91.26.12962.  Google Scholar

[13]

A. Lader, H. Woodward, E. Lin and H. Cantiello, Modeling of ionic waves along actin filaments by discrete electrical transmission lines,, METMBS'00 International Conference, (2000), 77.   Google Scholar

[14]

E. Lin and H. Cantiello, A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin,, Biophys. J., 65 (1993), 1371.  doi: 10.1016/S0006-3495(93)81188-3.  Google Scholar

[15]

X. Liu and H. Pollack, Mechanics of F-actin characterized with microfabricated cantilevers,, Biophys. J., 83 (2002), 2705.  doi: 10.1016/S0006-3495(02)75280-6.  Google Scholar

[16]

T. Odijk, Stiff chains and filaments under tension,, Macromolecules, 28 (1995), 7016.  doi: 10.1021/ma00124a044.  Google Scholar

[17]

A. Orlova and E. H. Egelman, F-actin retains a memory of angular order,, Biophys. J., 78 (2000), 2180.  doi: 10.1016/S0006-3495(00)76765-8.  Google Scholar

[18]

S. M. Perepelytsya and S. N. Volkov, Counterion vibrations in the DNA low-frequency spectra,, Eur. Phys. J. E., 24 (2007), 261.  doi: 10.1140/epje/i2007-10236-x.  Google Scholar

[19]

M. Peyrard, Nonlinear dynamics and statistical physics of DNA,, Nonlinearity, 17 (2004).  doi: 10.1088/0951-7715/17/2/R01.  Google Scholar

[20]

M. Peyrard, S. Cuesta-López and G. James, Nonlinear analysis of the dynamics of DNA breathing,, Journal of Biological Physics, 35 (2009), 73.  doi: 10.1007/s10867-009-9127-2.  Google Scholar

[21]

S. Portet, C. Hogue, J. A. Tuszyński and J. M. Dixon, Elastic vibrations in seamless microtubules,, European Biophysics Journal, 34 (2005), 912.  doi: 10.1007/s00249-005-0461-4.  Google Scholar

[22]

A. Priel, A. J. Ramos, J. A. Tuszyński and H. F. Cantiello, A biopolymer transistor: Electrical amplification by microtubules,, Biophys. J., 90 (2006), 4639.  doi: 10.1529/biophysj.105.078915.  Google Scholar

[23]

A. Priel and J. A. Tuszyński, A nonlinear cable-like model of amplified ionic wave propagation along microtubules,, EPL, 83 (2008).   Google Scholar

[24]

M. Salerno and Y. S. Kivshar, DNA promoters and nonlinear dynamics,, Phys. Lett. A, 193 (1994), 263.  doi: 10.1016/0375-9601(94)90594-0.  Google Scholar

[25]

A. V. Savin, L. I. Manevich, P. L. Christiansen and A. V. Zolotaryuk, Nonlinear dynamics of zigzag molecular chains,, Physics-Uspekhi, 42 (1999), 245.  doi: 10.1070/PU1999v042n03ABEH000539.  Google Scholar

[26]

J. A. Tuszyński, S. Portet, J. M. Dixon, C. Luxford and H. F. Cantiello, Ionic wave propagation along actin filaments,, Biophys. J., 86 (2004), 1890.   Google Scholar

[27]

L. V. Yakushevich, A. V. Savin and L. I. Manevitch, Nonlinear dynamics of topological solitons in DNA,, Phys. Rev. E, 66 (2002).  doi: 10.1103/PhysRevE.66.016614.  Google Scholar

[28]

A. V. Zolotaryuk, P. L. Christiansen and A. V.Savin, Two-dimensional dynamics of a free molecular chain with a secondary structure,, Phys. Rev. E, 54 (1996), 3881.  doi: 10.1103/PhysRevE.54.3881.  Google Scholar

[1]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[2]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[3]

Takayoshi Ogawa, Hiroshi Wakui. Stability and instability of solutions to the drift-diffusion system. Evolution Equations & Control Theory, 2017, 6 (4) : 587-597. doi: 10.3934/eect.2017029

[4]

Clément Jourdana, Paola Pietra. A quantum Drift-Diffusion model and its use into a hybrid strategy for strongly confined nanostructures. Kinetic & Related Models, 2019, 12 (1) : 217-242. doi: 10.3934/krm.2019010

[5]

Corrado Lattanzio, Pierangelo Marcati. The relaxation to the drift-diffusion system for the 3-$D$ isentropic Euler-Poisson model for semiconductors. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 449-455. doi: 10.3934/dcds.1999.5.449

[6]

H.J. Hwang, K. Kang, A. Stevens. Drift-diffusion limits of kinetic models for chemotaxis: A generalization. Discrete & Continuous Dynamical Systems - B, 2005, 5 (2) : 319-334. doi: 10.3934/dcdsb.2005.5.319

[7]

T. Ogawa. The degenerate drift-diffusion system with the Sobolev critical exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 875-886. doi: 10.3934/dcdss.2011.4.875

[8]

Ronald E. Mickens. A nonstandard finite difference scheme for the drift-diffusion system. Conference Publications, 2009, 2009 (Special) : 558-563. doi: 10.3934/proc.2009.2009.558

[9]

Claire Chainais-Hillairet, Ingrid Lacroix-Violet. On the existence of solutions for a drift-diffusion system arising in corrosion modeling. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 77-92. doi: 10.3934/dcdsb.2015.20.77

[10]

Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205

[11]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

[12]

Elio E. Espejo, Masaki Kurokiba, Takashi Suzuki. Blowup threshold and collapse mass separation for a drift-diffusion system in space-dimension two. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2627-2644. doi: 10.3934/cpaa.2013.12.2627

[13]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[14]

Stéphanie Portet, Julien Arino. An in vivo intermediate filament assembly model. Mathematical Biosciences & Engineering, 2009, 6 (1) : 117-134. doi: 10.3934/mbe.2009.6.117

[15]

R.A. Satnoianu, Philip K. Maini, F.S. Garduno, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 339-362. doi: 10.3934/dcdsb.2001.1.339

[16]

Jáuber Cavalcante Oliveira, Jardel Morais Pereira, Gustavo Perla Menzala. Long time dynamics of a multidimensional nonlinear lattice with memory. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2715-2732. doi: 10.3934/dcdsb.2015.20.2715

[17]

Silvia Caprino, Carlo Marchioro. On the plasma-charge model. Kinetic & Related Models, 2010, 3 (2) : 241-254. doi: 10.3934/krm.2010.3.241

[18]

Pierluigi Colli, Antonio Segatti. Uniform attractors for a phase transition model coupling momentum balance and phase dynamics. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 909-932. doi: 10.3934/dcds.2008.22.909

[19]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[20]

Francisco Guillén-González, Mamadou Sy. Iterative method for mass diffusion model with density dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 823-841. doi: 10.3934/dcdsb.2008.10.823

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

[Back to Top]