• Previous Article
    Bose-Einstein condensates and spectral properties of multicomponent nonlinear Schrödinger equations
  • DCDS-S Home
  • This Issue
  • Next Article
    Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments
October  2011, 4(5): 1167-1179. doi: 10.3934/dcdss.2011.4.1167

Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements

1. 

Bogolyubov Institute for Theoretical Physics, Metrologichna str. 14 B, 01413, Kiev, Ukraine

2. 

Department of Mathematics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark, Denmark

3. 

Department of Applied Mathematics and Statistics, University of the Basque Country, E-48080 Bilbao, Spain

4. 

Department of Informatics and Mathematical Modeling & Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

5. 

Toyota Central R&D Labs, Inc., Nagakute, 480-1192 Aichi, Japan, Japan

6. 

Department of Mathematics and Computer Science, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Received  September 2009 Revised  January 2010 Published  December 2010

The dynamics of asymmetrically coupled nonlinear elements is considered. It is shown that there are two distinctive regimes of oscillatory behavior of one-way nonlinearly coupled elements depending on the relaxation time and the strength of the coupling. In the subcritical regime when the relaxation time is shorter than a critical one a spatially uniform stationary state is stable. In the supercritical regime due to a Hopf bifurcation traveling waves spontaneously create and propagate along the system. Our analytical approach is in good agreement with numerical simulations of the fully nonlinear model.
Citation: Yuri B. Gaididei, Rainer Berkemer, Carlos Gorria, Peter L. Christiansen, Atsushi Kawamoto, Takahiro Shiga, Mads P. Sørensen, Jens Starke. Complex spatiotemporal behavior in a chain of one-way nonlinearly coupled elements. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1167-1179. doi: 10.3934/dcdss.2011.4.1167
References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1972).   Google Scholar

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation,, Phys. Rev. E, 51 (1995), 1035.  doi: 10.1103/PhysRevE.51.1035.  Google Scholar

[3]

A. R. Bulsara, V. In, A. Kho, A. Palacios, P. Longhini, J. D. Neff, G. Anderson, C. Obra, S. Baglio and B. Ando, Exploiting nonlinear dynamics in a coupled-core fluxgate magnetometer,, Meas. Sci. Technol., 19 (2008), 075203.  doi: 10.1088/0957-0233/19/7/075203.  Google Scholar

[4]

A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators and the lamprey spinal generator for locomotion: A mathematical model,, J. Math. Biol., 13 (): 345.  doi: 10.1007/BF00276069.  Google Scholar

[5]

Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models,, New Journal of Phys., 11 (2009), 073012.  doi: 10.1088/1367-2630/11/7/073012.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,", Springer-Verlag, (1997).   Google Scholar

[7]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[8]

V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators,, Phys. Rev. Lett., 91 (2003), 244101.  doi: 10.1103/PhysRevLett.91.244101.  Google Scholar

[9]

V. In, A. Palacios, P. Longhini, A. Kho, J. D. Neff, S. Baglio and B. Ando, Complex behavior in driven unidirectionally coupled overdamped Duffing oscillators,, Phys. Rev. E, 73 (2006), 066121.  doi: 10.1103/PhysRevE.73.066121.  Google Scholar

[10]

B. S. Kerner, "The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory,", Springer, (2004).   Google Scholar

[11]

B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory,", Springer, (2009).  doi: 10.1007/978-3-642-02605-8.  Google Scholar

[12]

T. Nagatani, The physics of traffic jams,, Rep. Prog. Phys., 65 (2002), 1331.  doi: 10.1088/0034-4885/65/9/203.  Google Scholar

[13]

C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion,, J. Math. Biol., 53 (2006), 474.  doi: 10.1007/s00285-006-0021-2.  Google Scholar

[14]

Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Phys., 10 (2008), 033001.  doi: 10.1088/1367-2630/10/3/033001.  Google Scholar

[15]

A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii, and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmoidal slime mold,, Phys. Rev. Lett., 87 (2001), 078102.  doi: 10.1103/PhysRevLett.87.078102.  Google Scholar

[16]

A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators,, Phys. Rev. Lett., 92 (2004), 228102.  doi: 10.1103/PhysRevLett.92.228102.  Google Scholar

[17]

K. van der Weele, G. Kannelopulos, C. Tsiavos and D. van der Meer, Transient granular shock waves and upstream motion on a staircase,, Phys. Rev. E, 80 (2009).   Google Scholar

[18]

S. Wiggins, "Introduction to Applied Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[19]

D. E. Wolf, M. Schreckenberg and A. Bachem (ed), "Traffic and Granular Flow,", World Scientific, (1996).   Google Scholar

[20]

M. Yamamoto, Y. Nomura and Y. Sugiyama, Dissipative system with asymmetric interaction and Hopf bifurcation,, Phys. Rev. E, 80 (2009), 026203.  doi: 10.1103/PhysRevE.80.026203.  Google Scholar

show all references

References:
[1]

M. Abramowitz and I. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1972).   Google Scholar

[2]

M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation,, Phys. Rev. E, 51 (1995), 1035.  doi: 10.1103/PhysRevE.51.1035.  Google Scholar

[3]

A. R. Bulsara, V. In, A. Kho, A. Palacios, P. Longhini, J. D. Neff, G. Anderson, C. Obra, S. Baglio and B. Ando, Exploiting nonlinear dynamics in a coupled-core fluxgate magnetometer,, Meas. Sci. Technol., 19 (2008), 075203.  doi: 10.1088/0957-0233/19/7/075203.  Google Scholar

[4]

A. H. Cohen, P. J. Holmes and R. H. Rand, The nature of the coupling between segmental oscillators and the lamprey spinal generator for locomotion: A mathematical model,, J. Math. Biol., 13 (): 345.  doi: 10.1007/BF00276069.  Google Scholar

[5]

Yu. B. Gaididei, R. Berkemer, J. G. Caputo, P. L. Christiansen, A. Kawamoto, T. Shiga, M. P. Sørensen and J. Starke, Analytical solutions of jam pattern formation on a ring for a class of optimal velocity traffic models,, New Journal of Phys., 11 (2009), 073012.  doi: 10.1088/1367-2630/11/7/073012.  Google Scholar

[6]

J. Guckenheimer and P. Holmes, "Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields,", Springer-Verlag, (1997).   Google Scholar

[7]

D. Helbing, Traffic and related self-driven many-particle systems,, Rev. Modern Phys., 73 (2001), 1067.  doi: 10.1103/RevModPhys.73.1067.  Google Scholar

[8]

V. In, A. Kho, J. D. Neff, A. Palacios, P. Longhini and B. K. Meadows, Experimental observation of multifrequency patterns in arrays of coupled nonlinear oscillators,, Phys. Rev. Lett., 91 (2003), 244101.  doi: 10.1103/PhysRevLett.91.244101.  Google Scholar

[9]

V. In, A. Palacios, P. Longhini, A. Kho, J. D. Neff, S. Baglio and B. Ando, Complex behavior in driven unidirectionally coupled overdamped Duffing oscillators,, Phys. Rev. E, 73 (2006), 066121.  doi: 10.1103/PhysRevE.73.066121.  Google Scholar

[10]

B. S. Kerner, "The Physics of Traffic: Empirical Freeway Pattern Features, Engineering Applications, and Theory,", Springer, (2004).   Google Scholar

[11]

B. S. Kerner, "Introduction to Modern Traffic Flow Theory and Control. The Long Road to Three-Phase Traffic Theory,", Springer, (2009).  doi: 10.1007/978-3-642-02605-8.  Google Scholar

[12]

T. Nagatani, The physics of traffic jams,, Rep. Prog. Phys., 65 (2002), 1331.  doi: 10.1088/0034-4885/65/9/203.  Google Scholar

[13]

C. M. A. Pinto and M. Golubitsky, Central pattern generators for bipedal locomotion,, J. Math. Biol., 53 (2006), 474.  doi: 10.1007/s00285-006-0021-2.  Google Scholar

[14]

Yu. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki and S. Yukawa, Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam,, New Journal of Phys., 10 (2008), 033001.  doi: 10.1088/1367-2630/10/3/033001.  Google Scholar

[15]

A. Takamatsu, R. Tanaka, T. Nakagaki, T. Fujii, and I. Endo, Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmoidal slime mold,, Phys. Rev. Lett., 87 (2001), 078102.  doi: 10.1103/PhysRevLett.87.078102.  Google Scholar

[16]

A. Takamatsu, R. Tanaka and T. Fujii, Hidden symmetry in chains of biological coupled oscillators,, Phys. Rev. Lett., 92 (2004), 228102.  doi: 10.1103/PhysRevLett.92.228102.  Google Scholar

[17]

K. van der Weele, G. Kannelopulos, C. Tsiavos and D. van der Meer, Transient granular shock waves and upstream motion on a staircase,, Phys. Rev. E, 80 (2009).   Google Scholar

[18]

S. Wiggins, "Introduction to Applied Dynamical Systems and Chaos,", Springer-Verlag, (1990).   Google Scholar

[19]

D. E. Wolf, M. Schreckenberg and A. Bachem (ed), "Traffic and Granular Flow,", World Scientific, (1996).   Google Scholar

[20]

M. Yamamoto, Y. Nomura and Y. Sugiyama, Dissipative system with asymmetric interaction and Hopf bifurcation,, Phys. Rev. E, 80 (2009), 026203.  doi: 10.1103/PhysRevE.80.026203.  Google Scholar

[1]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[5]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[6]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[7]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[8]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[Back to Top]