October  2011, 4(5): 1267-1285. doi: 10.3934/dcdss.2011.4.1267

Persistent mobile lattice excitations in a crystalline insulator

1. 

Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, United Kingdom

2. 

Maxwell Institute and Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom

Received  September 2009 Revised  November 2009 Published  December 2010

We examine tracks in crystals of muscovite of high energy charged particles, and of mobile lattice excitations created by kinetic atomic scattering. The mobile lattice excitations are interpreted as a type of breather, here called a quodon. The typical energy of a quodon can be found from the decay of potassium K40 atoms in the crystal and supports their interpretation as a type of breather. In turn, this establishes a unique signature for energetic quodons, the 'kinked-line' tracks, allowing discrimination against tracks formed by charged particles. The stability of quodons against crystal defects and thermal motion is considered. Measurements on energetic quodon tracks, with flight paths up to 530mm, show that they can propagate more than 109 unit cells with no evidence of energy loss. This suggests that quodons might persist indefinitely in certain crystals of high quality. Evidence is presented for a new type of mobile lattice excitation that is capable of creating energetic quodons, which also is stable against lattice defects. Possible practical applications of quodons are considered briefly. Although quodons can induce fusion in deuterium or tritium, present indications are that the rate is too low to be of practical use. Finally, a nonlinear lattice effect that might increase this rate is suggested.
Citation: Francis Michael Russell, J. C. Eilbeck. Persistent mobile lattice excitations in a crystalline insulator. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1267-1285. doi: 10.3934/dcdss.2011.4.1267
References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.065901.  Google Scholar

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures,, J. Phys. Chem. B, 110 (2006).  doi: 10.1021/jp0631228.  Google Scholar

[3]

E. Ben-Jacob and P. Garick, The formation of patterns in non-equilibrium growth,, Nature, 343 (1990), 523.  doi: 10.1038/343523a0.  Google Scholar

[4]

I. P. Chernov, A. P. Mamontov, A. A. Botaki, P. A. Cherdantsev, B. V. Chakhlov, S. R. Sharov, Yu. A. Timoshnikov and L. A. Filipenko, Anomalous effect of small doses of ionizing radiation on metals and alloys,, Radiation Effects, 97 (1986), 155.  doi: 10.1080/00337578608208729.  Google Scholar

[5]

D. R. Collins and F. M. Russell, Computer modelling studies of solitons in layered silicates,, in, (1994), 22.   Google Scholar

[6]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[7]

V. Dubinko, Breather mechanism of void ordering in crystals under irradiation,, to be published in: Nucl. Inst. and Meth. in Phys. Research B, (2009).   Google Scholar

[8]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling,, J. Nuclear Materials, 385 (2009), 228.  doi: 10.1016/j.jnucmat.2008.11.028.  Google Scholar

[9]

LANF was proposed in 2002 by F. M. Russell in private discussions with J. C. Eilbeck.,  , Patent applications were filed on 2/05/2005 at the UK Pat. Office., ().   Google Scholar

[10]

X. Z. Li, B. Liu, Q. M. Wei, S. X. Zheng and D. X. Cao, Chinese view on summary of condensed matter nuclear science,, J. Fusion Energy, 23 (2004), 217.  doi: 10.1007/s10894-005-5601-4.  Google Scholar

[11]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225.  doi: 10.1016/S0375-9601(98)00577-5.  Google Scholar

[12]

J. L. Marín, J. C. Eilbeck and F. M. Russell, 2-D breathers and applications,, in, (2000), 293.   Google Scholar

[13]

J. L. Marín, F. M. Russell and J. C. Eilbeck, Breathers in cuprate-like lattices,, Phys. Letts. A, 281 (2001), 21.  doi: 10.1016/S0375-9601(01)00092-5.  Google Scholar

[14]

Yu. V. Martynenko and P. G. Moscovkin, Solitons in radiation physics of crystals,, Rad. Eff. Def. Solids, 117 (1991), 321.  doi: 10.1080/10420159108220750.  Google Scholar

[15]

G. H. Miley, H. Towner and N. Ivich, "Fusion Cross Sections,", Report COO-2218-17, (): 2218.   Google Scholar

[16]

D. M. Newns and C. C. Tsuei, Fluctuating Cu-O-Cu bond model of high-temperature superconductivity,, Nature Physics, 3 (2007), 184.  doi: 10.1038/nphys542.  Google Scholar

[17]

F. M. Russell, Identification and selection criteria for charged lepton tracks in mica,, Nucl. Tracks Radiat. Meas., 15 (1988), 41.  doi: 10.1016/1359-0189(88)90098-2.  Google Scholar

[18]

F. M. Russell and D. R. Collins, Lattice-solitons and non-linear phenomena in track formation,, Radiation Measurements, 25 (1995), 67.  doi: 10.1016/1350-4487(95)00034-C.  Google Scholar

[19]

F. M. Russell and D. R. Collins, Lattice-solitons in radiation damage,, Nucl. Insts. and Methods B, 105 (1995), 30.  doi: 10.1016/0168-583X(95)00934-5.  Google Scholar

[20]

F. M. Russell and D. R. Collins, Anharmonic excitations in high Tc materials,, Phys. Letts. A, 216 (1996), 197.  doi: 10.1016/0375-9601(96)00251-4.  Google Scholar

[21]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300k,, Europhysics Letters, 78 (2007).  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[22]

F. M. Russell, Y. Zolotaryuk, J. C. Eilbeck and T. Dauxois, Moving breathers in a chain of magnetic pendulums,, Phys. Rev. B, 55 (1997), 6304.  doi: 10.1103/PhysRevB.55.6304.  Google Scholar

[23]

P. Sen, J. Akhtar and F. M. Russell, MeV ion-induced movement of lattice disorder in single crystal silicon,, Europhys Lett, 51 (2000), 401.  doi: 10.1209/epl/i2000-00508-7.  Google Scholar

[24]

R. H. Silbee, Focusing in collision problems in solids,, J. Appl. Phys., 28 (1957).  doi: 10.1063/1.1722626.  Google Scholar

[25]

J. W. Steeds, F. M. Russell and W. J. Vine, Formation of epidote follil positron tracks in mica,, Optik, 92 (1993), 149.   Google Scholar

show all references

References:
[1]

G. Abrasonis, W. Moller and X. X. Ma, Anomalous ion accelerated bulk diffusion of interstitial nitrogen,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.065901.  Google Scholar

[2]

J. F. R. Archilla, J. Cuevas, M. D. Alba, M. Naranjo and J. M. Trillo, Discrete breathers for understanding reconstructive mineral processes at low temperatures,, J. Phys. Chem. B, 110 (2006).  doi: 10.1021/jp0631228.  Google Scholar

[3]

E. Ben-Jacob and P. Garick, The formation of patterns in non-equilibrium growth,, Nature, 343 (1990), 523.  doi: 10.1038/343523a0.  Google Scholar

[4]

I. P. Chernov, A. P. Mamontov, A. A. Botaki, P. A. Cherdantsev, B. V. Chakhlov, S. R. Sharov, Yu. A. Timoshnikov and L. A. Filipenko, Anomalous effect of small doses of ionizing radiation on metals and alloys,, Radiation Effects, 97 (1986), 155.  doi: 10.1080/00337578608208729.  Google Scholar

[5]

D. R. Collins and F. M. Russell, Computer modelling studies of solitons in layered silicates,, in, (1994), 22.   Google Scholar

[6]

J. Cuevas, C. Katerji, J. F. R. Archilla, J. C. Eilbeck and F. M. Russell, Influence of moving breathers on vacancies migration,, Phys. Lett., 315 (2003), 364.  doi: 10.1016/S0375-9601(03)01097-1.  Google Scholar

[7]

V. Dubinko, Breather mechanism of void ordering in crystals under irradiation,, to be published in: Nucl. Inst. and Meth. in Phys. Research B, (2009).   Google Scholar

[8]

V. I. Dubinko, A. G. Guglya, E. Melnichenko and R. Vasilenko, Radiation-induced reduction in the void swelling,, J. Nuclear Materials, 385 (2009), 228.  doi: 10.1016/j.jnucmat.2008.11.028.  Google Scholar

[9]

LANF was proposed in 2002 by F. M. Russell in private discussions with J. C. Eilbeck.,  , Patent applications were filed on 2/05/2005 at the UK Pat. Office., ().   Google Scholar

[10]

X. Z. Li, B. Liu, Q. M. Wei, S. X. Zheng and D. X. Cao, Chinese view on summary of condensed matter nuclear science,, J. Fusion Energy, 23 (2004), 217.  doi: 10.1007/s10894-005-5601-4.  Google Scholar

[11]

J. L. Marín, J. C. Eilbeck and F. M. Russell, Localized moving breathers in a 2-D hexagonal lattice,, Phys. Letts. A, 248 (1998), 225.  doi: 10.1016/S0375-9601(98)00577-5.  Google Scholar

[12]

J. L. Marín, J. C. Eilbeck and F. M. Russell, 2-D breathers and applications,, in, (2000), 293.   Google Scholar

[13]

J. L. Marín, F. M. Russell and J. C. Eilbeck, Breathers in cuprate-like lattices,, Phys. Letts. A, 281 (2001), 21.  doi: 10.1016/S0375-9601(01)00092-5.  Google Scholar

[14]

Yu. V. Martynenko and P. G. Moscovkin, Solitons in radiation physics of crystals,, Rad. Eff. Def. Solids, 117 (1991), 321.  doi: 10.1080/10420159108220750.  Google Scholar

[15]

G. H. Miley, H. Towner and N. Ivich, "Fusion Cross Sections,", Report COO-2218-17, (): 2218.   Google Scholar

[16]

D. M. Newns and C. C. Tsuei, Fluctuating Cu-O-Cu bond model of high-temperature superconductivity,, Nature Physics, 3 (2007), 184.  doi: 10.1038/nphys542.  Google Scholar

[17]

F. M. Russell, Identification and selection criteria for charged lepton tracks in mica,, Nucl. Tracks Radiat. Meas., 15 (1988), 41.  doi: 10.1016/1359-0189(88)90098-2.  Google Scholar

[18]

F. M. Russell and D. R. Collins, Lattice-solitons and non-linear phenomena in track formation,, Radiation Measurements, 25 (1995), 67.  doi: 10.1016/1350-4487(95)00034-C.  Google Scholar

[19]

F. M. Russell and D. R. Collins, Lattice-solitons in radiation damage,, Nucl. Insts. and Methods B, 105 (1995), 30.  doi: 10.1016/0168-583X(95)00934-5.  Google Scholar

[20]

F. M. Russell and D. R. Collins, Anharmonic excitations in high Tc materials,, Phys. Letts. A, 216 (1996), 197.  doi: 10.1016/0375-9601(96)00251-4.  Google Scholar

[21]

F. M. Russell and J. C. Eilbeck, Evidence for moving breathers in a layered crystal insulator at 300k,, Europhysics Letters, 78 (2007).  doi: 10.1209/0295-5075/78/10004.  Google Scholar

[22]

F. M. Russell, Y. Zolotaryuk, J. C. Eilbeck and T. Dauxois, Moving breathers in a chain of magnetic pendulums,, Phys. Rev. B, 55 (1997), 6304.  doi: 10.1103/PhysRevB.55.6304.  Google Scholar

[23]

P. Sen, J. Akhtar and F. M. Russell, MeV ion-induced movement of lattice disorder in single crystal silicon,, Europhys Lett, 51 (2000), 401.  doi: 10.1209/epl/i2000-00508-7.  Google Scholar

[24]

R. H. Silbee, Focusing in collision problems in solids,, J. Appl. Phys., 28 (1957).  doi: 10.1063/1.1722626.  Google Scholar

[25]

J. W. Steeds, F. M. Russell and W. J. Vine, Formation of epidote follil positron tracks in mica,, Optik, 92 (1993), 149.   Google Scholar

[1]

Poonam Savsani, Mohamed A. Tawhid. Discrete heat transfer search for solving travelling salesman problem. Mathematical Foundations of Computing, 2018, 1 (3) : 265-280. doi: 10.3934/mfc.2018012

[2]

Eberhard Bänsch, Steffen Basting, Rolf Krahl. Numerical simulation of two-phase flows with heat and mass transfer. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2325-2347. doi: 10.3934/dcds.2015.35.2325

[3]

Youcef Amirat, Kamel Hamdache. Strong solutions to the equations of flow and heat transfer in magnetic fluids with internal rotations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3289-3320. doi: 10.3934/dcds.2013.33.3289

[4]

Grégoire Allaire, Zakaria Habibi. Second order corrector in the homogenization of a conductive-radiative heat transfer problem. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 1-36. doi: 10.3934/dcdsb.2013.18.1

[5]

Youcef Amirat, Kamel Hamdache. Weak solutions to stationary equations of heat transfer in a magnetic fluid. Communications on Pure & Applied Analysis, 2019, 18 (2) : 709-734. doi: 10.3934/cpaa.2019035

[6]

Marcelo Disconzi, Daniel Toundykov, Justin T. Webster. Front matter. Evolution Equations & Control Theory, 2016, 5 (4) : i-iii. doi: 10.3934/eect.201604i

[7]

Xiaojiao Tong, Felix F. Wu, Jifeng Su. Quadratic approximation and visualization of online contract-based available transfer capability region of power systems. Journal of Industrial & Management Optimization, 2008, 4 (3) : 553-563. doi: 10.3934/jimo.2008.4.553

[8]

Yila Bai, Haiqing Zhao, Xu Zhang, Enmin Feng, Zhijun Li. The model of heat transfer of the arctic snow-ice layer in summer and numerical simulation. Journal of Industrial & Management Optimization, 2005, 1 (3) : 405-414. doi: 10.3934/jimo.2005.1.405

[9]

Yong Hong Wu, B. Wiwatanapataphee. Modelling of turbulent flow and multi-phase heat transfer under electromagnetic force. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 695-706. doi: 10.3934/dcdsb.2007.8.695

[10]

Yasir Ali, Arshad Alam Khan. Exact solution of magnetohydrodynamic slip flow and heat transfer over an oscillating and translating porous plate. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 595-606. doi: 10.3934/dcdss.2018034

[11]

Kim S. Bey, Peter Z. Daffer, Hideaki Kaneko, Puntip Toghaw. Error analysis of the p-version discontinuous Galerkin method for heat transfer in built-up structures. Communications on Pure & Applied Analysis, 2007, 6 (3) : 719-740. doi: 10.3934/cpaa.2007.6.719

[12]

Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933

[13]

Zhiqiang Yang, Junzhi Cui, Qiang Ma. The second-order two-scale computation for integrated heat transfer problem with conduction, convection and radiation in periodic porous materials. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 827-848. doi: 10.3934/dcdsb.2014.19.827

[14]

Dmitry Vorotnikov. The flashing ratchet and unidirectional transport of matter. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 963-971. doi: 10.3934/dcdsb.2011.16.963

[15]

Timothy C. Reluga, Jan Medlock. Resistance mechanisms matter in SIR models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 553-563. doi: 10.3934/mbe.2007.4.553

[16]

Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057

[17]

Lorenzo Audibert, Alexandre Girard, Houssem Haddar. Identifying defects in an unknown background using differential measurements. Inverse Problems & Imaging, 2015, 9 (3) : 625-643. doi: 10.3934/ipi.2015.9.625

[18]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[19]

Xavier Brusset, Per J. Agrell. Intrinsic impediments to category captainship collaboration. Journal of Industrial & Management Optimization, 2017, 13 (1) : 113-133. doi: 10.3934/jimo.2016007

[20]

Carlo Alabiso, Mario Casartelli. Quasi Normal modes in stochastic domains. Conference Publications, 2003, 2003 (Special) : 21-29. doi: 10.3934/proc.2003.2003.21

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]