-
Previous Article
Exact solutions for periodic and solitary matter waves in nonlinear lattices
- DCDS-S Home
- This Issue
-
Next Article
Persistent mobile lattice excitations in a crystalline insulator
Logic operations demonstrated with localized vibrations in a micromechanical cantilever array
1. | Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan, Japan |
2. | Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853-2501, United States |
References:
[1] |
Q. Chen, L. Huang, Y.-C. Lai and D. Dietz, Dynamical mechanism of intrinsic localized modes in micromechanical oscillator arrays, Chaos, 19 (2009), 013127.
doi: 10.1063/1.3078706. |
[2] |
M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear flexural-flexural-torsional dynamics of inextensional beams II. Forced motions, J. Struct. Mech., 6 (1978), 449.
doi: 10.1080/03601217808907349. |
[3] |
A. J. Dick, A. J. Balachandran and C. D. Mote, Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes, Nonlin. Dyn., 54 (2008), 13-29.
doi: 10.1007/s11071-007-9288-0. |
[4] |
J. Fajans and L. Friedland, Autoresonant (nonstationary) excitation of pendulums, plutinos, plasmas and other nonlinear oscillators, Am. J. Phys., 69 (2001), 1096-1102.
doi: 10.1119/1.1389278. |
[5] |
S. L. Hurst, "The Logical Processing of Digital Signals," Chap. 1, Crane, Russak & Company, Inc., New York, 1978. |
[6] |
E. Kenig, R. Lifshitz and M. C. Cross, Pattern selection in parametrically driven arrays of nonlinear resonators, Phys. Rev. E, 79 (2009), 026203.
doi: 10.1103/PhysRevE.79.026203. |
[7] |
E. Kenig, B. A. Malomed, M. C. Cross and R. Lifshitz, Intrinsic localized modes in parametrically-driven arrays of nonlinear resonators, arXiv:0904.1355v1, (2009). |
[8] |
P. Maniadis and S. Flach, Mechanism of discrete breather excitation in driven micro-mechanical cantilever array, Euro Phys. Lett., 74 (2006), 452-458.
doi: 10.1209/epl/i2005-10550-y. |
[9] |
A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations," Chap. 4, John Wiley & Sons, New York, 1979. |
[10] |
T. Rössler and J. B. Page, Intrinsic localized modes in driven anharmonic lattices with realistic potentials, Physics Letters A, 204 (1995), 418.
doi: 10.1016/0375-9601(95)00519-9. |
[11] |
M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array, Phys. Rev. Lett., 90 (2003), 044102.
doi: 10.1103/PhysRevLett.90.044102. |
[12] |
M. Sato, B. E. Hubbard, L. Q. English, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Study of intrinsic localized vibrational modes in micromechanical oscillator arrays, Chaos, 13 (2003), 702.
doi: 10.1063/1.1540771. |
[13] |
M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic and H. G. Craighead, Optical manipulation of intrinsic localized vibrational energy in cantilever arrays, Europhys. Lett., 66 (2004), 318-323.
doi: 10.1209/epl/i2003-10224-x. |
[14] |
M. Sato, B. E. Hubbard and A. J. Sievers, Nonlinear energy localization and its manipulation in micromechanical oscillator arrays, Rev. Mod. Phys., 78 (2006), 137-157.
doi: 10.1103/RevModPhys.78.137. |
[15] |
M. Sato, S. Yasui, M. Kimura, T. Hikihara and A. J. Sievers, Management of localized energy in discrete nonlinear transmission lines, Euro Phys. Lett., 80 (2007), 3002.
doi: 10.1209/0295-5075/80/30002. |
[16] |
M. Sato and A. J. Sievers, Visualizing intrinsic localized modes with a nonlinear micromechanical array, Low Temperature Physics, 34 (2008), 543-548.
doi: 10.1063/1.2957286. |
[17] |
M. Sato, B. E. Hubbard and A. J. Sievers,  , to be published., ().
|
[18] |
M. Spletzer, A. Raman, H. Sumali and J. P. Sullivan, Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays, Appl. Phys. Lett., 92 (2008), 114102.
doi: 10.1063/1.2899634. |
[19] |
J. Wiersig, S. Flach and K.-H. Ahn, Discrete breathers in ac-driven nanoelectromechanical shuttle arrays, Appl. Phys. Lett., 93 (2008), 222110.
doi: 10.1063/1.3043434. |
show all references
References:
[1] |
Q. Chen, L. Huang, Y.-C. Lai and D. Dietz, Dynamical mechanism of intrinsic localized modes in micromechanical oscillator arrays, Chaos, 19 (2009), 013127.
doi: 10.1063/1.3078706. |
[2] |
M. R. M. Crespo da Silva and C. C. Glynn, Nonlinear flexural-flexural-torsional dynamics of inextensional beams II. Forced motions, J. Struct. Mech., 6 (1978), 449.
doi: 10.1080/03601217808907349. |
[3] |
A. J. Dick, A. J. Balachandran and C. D. Mote, Intrinsic localized modes in microresonator arrays and their relationship to nonlinear vibration modes, Nonlin. Dyn., 54 (2008), 13-29.
doi: 10.1007/s11071-007-9288-0. |
[4] |
J. Fajans and L. Friedland, Autoresonant (nonstationary) excitation of pendulums, plutinos, plasmas and other nonlinear oscillators, Am. J. Phys., 69 (2001), 1096-1102.
doi: 10.1119/1.1389278. |
[5] |
S. L. Hurst, "The Logical Processing of Digital Signals," Chap. 1, Crane, Russak & Company, Inc., New York, 1978. |
[6] |
E. Kenig, R. Lifshitz and M. C. Cross, Pattern selection in parametrically driven arrays of nonlinear resonators, Phys. Rev. E, 79 (2009), 026203.
doi: 10.1103/PhysRevE.79.026203. |
[7] |
E. Kenig, B. A. Malomed, M. C. Cross and R. Lifshitz, Intrinsic localized modes in parametrically-driven arrays of nonlinear resonators, arXiv:0904.1355v1, (2009). |
[8] |
P. Maniadis and S. Flach, Mechanism of discrete breather excitation in driven micro-mechanical cantilever array, Euro Phys. Lett., 74 (2006), 452-458.
doi: 10.1209/epl/i2005-10550-y. |
[9] |
A. H. Nayfeh and D. T. Mook, "Nonlinear Oscillations," Chap. 4, John Wiley & Sons, New York, 1979. |
[10] |
T. Rössler and J. B. Page, Intrinsic localized modes in driven anharmonic lattices with realistic potentials, Physics Letters A, 204 (1995), 418.
doi: 10.1016/0375-9601(95)00519-9. |
[11] |
M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array, Phys. Rev. Lett., 90 (2003), 044102.
doi: 10.1103/PhysRevLett.90.044102. |
[12] |
M. Sato, B. E. Hubbard, L. Q. English, A. J. Sievers, B. Ilic, D. A. Czaplewski and H. G. Craighead, Study of intrinsic localized vibrational modes in micromechanical oscillator arrays, Chaos, 13 (2003), 702.
doi: 10.1063/1.1540771. |
[13] |
M. Sato, B. E. Hubbard, A. J. Sievers, B. Ilic and H. G. Craighead, Optical manipulation of intrinsic localized vibrational energy in cantilever arrays, Europhys. Lett., 66 (2004), 318-323.
doi: 10.1209/epl/i2003-10224-x. |
[14] |
M. Sato, B. E. Hubbard and A. J. Sievers, Nonlinear energy localization and its manipulation in micromechanical oscillator arrays, Rev. Mod. Phys., 78 (2006), 137-157.
doi: 10.1103/RevModPhys.78.137. |
[15] |
M. Sato, S. Yasui, M. Kimura, T. Hikihara and A. J. Sievers, Management of localized energy in discrete nonlinear transmission lines, Euro Phys. Lett., 80 (2007), 3002.
doi: 10.1209/0295-5075/80/30002. |
[16] |
M. Sato and A. J. Sievers, Visualizing intrinsic localized modes with a nonlinear micromechanical array, Low Temperature Physics, 34 (2008), 543-548.
doi: 10.1063/1.2957286. |
[17] |
M. Sato, B. E. Hubbard and A. J. Sievers,  , to be published., ().
|
[18] |
M. Spletzer, A. Raman, H. Sumali and J. P. Sullivan, Highly sensitive mass detection and identification using vibration localization in coupled microcantilever arrays, Appl. Phys. Lett., 92 (2008), 114102.
doi: 10.1063/1.2899634. |
[19] |
J. Wiersig, S. Flach and K.-H. Ahn, Discrete breathers in ac-driven nanoelectromechanical shuttle arrays, Appl. Phys. Lett., 93 (2008), 222110.
doi: 10.1063/1.3043434. |
[1] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial and Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[2] |
Jean-Pierre Eckmann, C. Eugene Wayne. Breathers as metastable states for the discrete NLS equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6091-6103. doi: 10.3934/dcds.2018136 |
[3] |
Michael Kastner, Jacques-Alexandre Sepulchre. Effective Hamiltonian for traveling discrete breathers in the FPU chain. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 719-734. doi: 10.3934/dcdsb.2005.5.719 |
[4] |
Panayotis Panayotaros. Continuation and bifurcations of breathers in a finite discrete NLS equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1227-1245. doi: 10.3934/dcdss.2011.4.1227 |
[5] |
Jesús Cuevas, Bernardo Sánchez-Rey, J. C. Eilbeck, Francis Michael Russell. Interaction of moving discrete breathers with interstitial defects. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1057-1067. doi: 10.3934/dcdss.2011.4.1057 |
[6] |
S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271 |
[7] |
Vassilis Rothos. Subharmonic bifurcations of localized solutions of a discrete NLS equation. Conference Publications, 2005, 2005 (Special) : 756-767. doi: 10.3934/proc.2005.2005.756 |
[8] |
Panayotis Panayotaros, Felipe Rivero. Multistability and localized attractors in a dissipative discrete NLS equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 1137-1154. doi: 10.3934/dcdsb.2014.19.1137 |
[9] |
Tetsu Mizumachi, Dmitry Pelinovsky. On the asymptotic stability of localized modes in the discrete nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 971-987. doi: 10.3934/dcdss.2012.5.971 |
[10] |
Yoshikazu Katayama, Colin E. Sutherland and Masamichi Takesaki. The intrinsic invariant of an approximately finite dimensional factor and the cocycle conjugacy of discrete amenable group actions. Electronic Research Announcements, 1995, 1: 43-47. |
[11] |
Qingxu Dou, Jesús Cuevas, J. C. Eilbeck, Francis Michael Russell. Breathers and kinks in a simulated crystal experiment. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1107-1118. doi: 10.3934/dcdss.2011.4.1107 |
[12] |
Bingsheng Shen, Yang Yang, Ruibin Ren. Three constructions of Golay complementary array sets. Advances in Mathematics of Communications, 2022 doi: 10.3934/amc.2022019 |
[13] |
Dario Bambusi, D. Vella. Quasi periodic breathers in Hamiltonian lattices with symmetries. Discrete and Continuous Dynamical Systems - B, 2002, 2 (3) : 389-399. doi: 10.3934/dcdsb.2002.2.389 |
[14] |
Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133 |
[15] |
Xavier Brusset, Per J. Agrell. Intrinsic impediments to category captainship collaboration. Journal of Industrial and Management Optimization, 2017, 13 (1) : 113-133. doi: 10.3934/jimo.2016007 |
[16] |
Leonid Berlyand, Giuseppe Cardone, Yuliya Gorb, Gregory Panasenko. Asymptotic analysis of an array of closely spaced absolutely conductive inclusions. Networks and Heterogeneous Media, 2006, 1 (3) : 353-377. doi: 10.3934/nhm.2006.1.353 |
[17] |
Samuel T. Blake, Andrew Z. Tirkel. A multi-dimensional block-circulant perfect array construction. Advances in Mathematics of Communications, 2017, 11 (2) : 367-371. doi: 10.3934/amc.2017030 |
[18] |
Siwei Yu, Jianwei Ma, Stanley Osher. Geometric mode decomposition. Inverse Problems and Imaging, 2018, 12 (4) : 831-852. doi: 10.3934/ipi.2018035 |
[19] |
Nicolas Van Goethem. The Frank tensor as a boundary condition in intrinsic linearized elasticity. Journal of Geometric Mechanics, 2016, 8 (4) : 391-411. doi: 10.3934/jgm.2016013 |
[20] |
Seung-Yeal Ha, Se Eun Noh, Jinyeong Park. Practical synchronization of generalized Kuramoto systems with an intrinsic dynamics. Networks and Heterogeneous Media, 2015, 10 (4) : 787-807. doi: 10.3934/nhm.2015.10.787 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]