October  2011, 4(5): 1327-1340. doi: 10.3934/dcdss.2011.4.1327

Dark solitary waves in nonlocal nonlinear Schrödinger systems

1. 

Dpto. de Matemática Aplicada, Fac. CC. Químicas, Universidad Complutense de Madrid 28040, Spain

Received  September 2009 Revised  January 2010 Published  December 2010

Dark soliton-like solutions are analyzed in the context of a certain nonlocal nonlinear Schrödinger Equation with nonlocal dispersive term of Kac-Baker type. Main purpose is to investigate such solutions with negative nonlinear term and the presence of general integral dispersive terms. First the model is presented and the properties of the fundamental solution, the continuous wave, is studied. Dark solitary waves are perturbations of this plane wave. The study of dark type of solutions is divided in two different cases black and dark solitary waves. The range of existence of such solutions is studied analytically, and also their physical quantities like norm, momentum and energy. Usual behavior of nonlinear systems under nonlocal dispersive terms is found.
Citation: David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327
References:
[1]

G. P. Agrawal, "Nonlinear Fiber Optics,", Academic Press, (1989).   Google Scholar

[2]

G. L. Alfimov, V. M. Eleonsky and N. E. Kulagin, Dynamical systems in the theory of solitons in the presence of nonlocal interactions,, Chaos, 2 (1992), 565.  doi: 10.1063/1.165862.  Google Scholar

[3]

G. L. Alfimov, V. M. Eleonsky, N. E. Kulagin and N. V. Mitskevich, Dynamics of topological solitons in models with nonlocal interactions,, Chaos, 3 (1993), 405.  doi: 10.1063/1.165948.  Google Scholar

[4]

G. L. Alfimov, V. M. Eleonsky and L. Lerman, Solitary wave solutions of nonlocal sine-Gordon equations,, Chaos, 8 (1998), 257.  doi: 10.1063/1.166304.  Google Scholar

[5]

G. L. Alfimov, T. Pierantozzi and L. Vázquez, Numerical study of a fractional sine-Gordon equation,, in, (2004), 644.   Google Scholar

[6]

G. L. Alfimov, D. Usero and L. Vázquez, On complex singularities of solutions of the equation $\mathcalHu_x-u+u^p=0$,, J. Phys. A: Math Gen., 33 (2000), 6707.  doi: 10.1088/0305-4470/33/38/305.  Google Scholar

[7]

G. A. Baker, One-dimensional order-disorder model wich approaches a second order phase transition,, Phys. Rev., 122 (1961), 1477.  doi: 10.1103/PhysRev.122.1477.  Google Scholar

[8]

I. V. Barashenkov, Stability criterion for dark solitons,, Phys. Rev. Lett., 77 (1996), 1193.  doi: 10.1103/PhysRevLett.77.1193.  Google Scholar

[9]

Ph. Blanchard, J. Stubbe and L. Vázquez, On the stability of solitary waves for classical scalar fields,, Ann. Inst. Henri Poincaré, 47 (1987), 309.   Google Scholar

[10]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, J. Fluid Mech., 29 (1967), 559.  doi: 10.1017/S002211206700103X.  Google Scholar

[11]

L. Di Menza and C. Gallo, The black solitons of the one-dimensional NLS equations,, Nonlinearity, 20 (2007), 461.  doi: 10.1088/0951-7715/20/2/010.  Google Scholar

[12]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang and W. Krolikowski, Observation of attraction between dark solitons,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.043901.  Google Scholar

[13]

Y. Gaididei, S. F. Mingaleev, P. L. Christiansen and K. O. Rasmussen, Effect of nonlocal dispersion on self interacting excitations,, Phys. Lett. A, 222 (1995), 152.  doi: 10.1016/0375-9601(96)00591-9.  Google Scholar

[14]

Y. Gaididei, S. F. Mingaleev, P. L. Christiansen and K. O. Rasmussen, Effect of nonlocal dispersive interactions on self-interacting excitations,, Phys. Rev. E, 55 (1997), 6141.  doi: 10.1103/PhysRevE.55.6141.  Google Scholar

[15]

A. Hasegawa, "Optical Solitons in Fibers,", Springer-Verlag, ().   Google Scholar

[16]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,, Appl. Phys. Lett., 23 (1973), 142.  doi: 10.1063/1.1654836.  Google Scholar

[17]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,, Appl. Phys. Lett., 23 (1973), 171.  doi: 10.1063/1.1654847.  Google Scholar

[18]

M. Kac and E. Helfand, Study of several lattice systems with long-range forces,, J. Math. Phys., 4 (1963), 1078.  doi: 10.1063/1.1704037.  Google Scholar

[19]

Y. S. Kivshar, Dark solitons in nonlinear optics,, I.E.E.E. J. Quantum Electron., 28 (1993), 250.  doi: 10.1109/3.199266.  Google Scholar

[20]

Y. S. Kivshar and W. Krölikovski, Lagrangian approach for dark solitons,, Opt. Comm., 114 (1995), 353.  doi: 10.1016/0030-4018(94)00644-A.  Google Scholar

[21]

Y. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81.  doi: 10.1016/S0370-1573(97)00073-2.  Google Scholar

[22]

Y. S. Kivshar and X. Yang, Perturbation-induced dynamics of dark-solitons,, Phys. Rev. E, 49 (1994), 1657.  doi: 10.1103/PhysRevE.49.1657.  Google Scholar

[23]

V. V. Konotop and V. E. Vekslerchik, Direct peerturbation theory for dark solitons,, Phys. Rev. E, 49 (1994), 2397.  doi: 10.1103/PhysRevE.49.2397.  Google Scholar

[24]

W. Królikowski and O. Bang, Solitons in nonlocal nonlinear media: Exact solutions,, Phys. Rev. E, 63 (2000).  doi: 10.1103/PhysRevE.63.016610.  Google Scholar

[25]

A. G. Litvak, V. A. Mironov, G. M. Fraiman and A. D Yunakovskii, Thermal self-interaction of wave beams in a plasma with nonlocal nonlinearity,, Sov. J. Plasma Phys., 1 (1975), 60.   Google Scholar

[26]

S. F. Mingaleev, Y. B. Gaididei, E. Majernikova and S. Shpyrko, Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions,, Phys. Rev. E, 61 (2000), 4454.  doi: 10.1103/PhysRevE.61.4454.  Google Scholar

[27]

L. F. Mollenauer, R. H. Stolen and G. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers,, Phys. Rev. Lett., 45 (1980), 1095.  doi: 10.1103/PhysRevLett.45.1095.  Google Scholar

[28]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[29]

A. Parola, L. Salasnich and L. Reatto, Structure and stability of bosonic clouds: Alkali-metal atoms with negative scattering length,, Phys. Rev. A, 57 (1998).   Google Scholar

[30]

D. E. Pelinovsky, Y. S. Kivshar and V. V. Afanasjev, Instability-induced dynamics of dark solitons,, Phys. Rev. E, 54 (1996), 2015.  doi: 10.1103/PhysRevE.54.2015.  Google Scholar

[31]

D. Suter and T. Blasberg, Stabilisation of transverse solitary waves by a nonlocal response of the nonlinear medium,, Phys. Rev. A, 48 (1993), 4583.  doi: 10.1103/PhysRevA.48.4583.  Google Scholar

[32]

D. Usero and L. Vázquez, Ecuaciones no locales y modelos fraccionarios,, Revista de la Real Academia de Ciencias Exactas, 99 (2005), 203.   Google Scholar

[33]

N. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. and Quantum Elect., 16 (1973), 783.  doi: 10.1007/BF01031343.  Google Scholar

[34]

L. Vázquez, W. A. B. Evans and G. Rickayzen, Numerical investigation of a non-local sine-Gordon model,, Phys. Lett. A, 189 (1994), 454.  doi: 10.1016/0375-9601(94)91209-2.  Google Scholar

[35]

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird and W. J. Tomlinson, Experimental observation of the fundamental dark soliton in optical fibers,, Phys. Rev. Lett., 61 (1988), 2445.  doi: 10.1103/PhysRevLett.61.2445.  Google Scholar

[36]

G. B. Whitham, "Linear and Nonlinear Waves,", Wiley Interscience, (1974).   Google Scholar

show all references

References:
[1]

G. P. Agrawal, "Nonlinear Fiber Optics,", Academic Press, (1989).   Google Scholar

[2]

G. L. Alfimov, V. M. Eleonsky and N. E. Kulagin, Dynamical systems in the theory of solitons in the presence of nonlocal interactions,, Chaos, 2 (1992), 565.  doi: 10.1063/1.165862.  Google Scholar

[3]

G. L. Alfimov, V. M. Eleonsky, N. E. Kulagin and N. V. Mitskevich, Dynamics of topological solitons in models with nonlocal interactions,, Chaos, 3 (1993), 405.  doi: 10.1063/1.165948.  Google Scholar

[4]

G. L. Alfimov, V. M. Eleonsky and L. Lerman, Solitary wave solutions of nonlocal sine-Gordon equations,, Chaos, 8 (1998), 257.  doi: 10.1063/1.166304.  Google Scholar

[5]

G. L. Alfimov, T. Pierantozzi and L. Vázquez, Numerical study of a fractional sine-Gordon equation,, in, (2004), 644.   Google Scholar

[6]

G. L. Alfimov, D. Usero and L. Vázquez, On complex singularities of solutions of the equation $\mathcalHu_x-u+u^p=0$,, J. Phys. A: Math Gen., 33 (2000), 6707.  doi: 10.1088/0305-4470/33/38/305.  Google Scholar

[7]

G. A. Baker, One-dimensional order-disorder model wich approaches a second order phase transition,, Phys. Rev., 122 (1961), 1477.  doi: 10.1103/PhysRev.122.1477.  Google Scholar

[8]

I. V. Barashenkov, Stability criterion for dark solitons,, Phys. Rev. Lett., 77 (1996), 1193.  doi: 10.1103/PhysRevLett.77.1193.  Google Scholar

[9]

Ph. Blanchard, J. Stubbe and L. Vázquez, On the stability of solitary waves for classical scalar fields,, Ann. Inst. Henri Poincaré, 47 (1987), 309.   Google Scholar

[10]

T. B. Benjamin, Internal waves of permanent form in fluids of great depth,, J. Fluid Mech., 29 (1967), 559.  doi: 10.1017/S002211206700103X.  Google Scholar

[11]

L. Di Menza and C. Gallo, The black solitons of the one-dimensional NLS equations,, Nonlinearity, 20 (2007), 461.  doi: 10.1088/0951-7715/20/2/010.  Google Scholar

[12]

A. Dreischuh, D. N. Neshev, D. E. Petersen, O. Bang and W. Krolikowski, Observation of attraction between dark solitons,, Phys. Rev. Lett., 96 (2006).  doi: 10.1103/PhysRevLett.96.043901.  Google Scholar

[13]

Y. Gaididei, S. F. Mingaleev, P. L. Christiansen and K. O. Rasmussen, Effect of nonlocal dispersion on self interacting excitations,, Phys. Lett. A, 222 (1995), 152.  doi: 10.1016/0375-9601(96)00591-9.  Google Scholar

[14]

Y. Gaididei, S. F. Mingaleev, P. L. Christiansen and K. O. Rasmussen, Effect of nonlocal dispersive interactions on self-interacting excitations,, Phys. Rev. E, 55 (1997), 6141.  doi: 10.1103/PhysRevE.55.6141.  Google Scholar

[15]

A. Hasegawa, "Optical Solitons in Fibers,", Springer-Verlag, ().   Google Scholar

[16]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,, Appl. Phys. Lett., 23 (1973), 142.  doi: 10.1063/1.1654836.  Google Scholar

[17]

A. Hasegawa and F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion,, Appl. Phys. Lett., 23 (1973), 171.  doi: 10.1063/1.1654847.  Google Scholar

[18]

M. Kac and E. Helfand, Study of several lattice systems with long-range forces,, J. Math. Phys., 4 (1963), 1078.  doi: 10.1063/1.1704037.  Google Scholar

[19]

Y. S. Kivshar, Dark solitons in nonlinear optics,, I.E.E.E. J. Quantum Electron., 28 (1993), 250.  doi: 10.1109/3.199266.  Google Scholar

[20]

Y. S. Kivshar and W. Krölikovski, Lagrangian approach for dark solitons,, Opt. Comm., 114 (1995), 353.  doi: 10.1016/0030-4018(94)00644-A.  Google Scholar

[21]

Y. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81.  doi: 10.1016/S0370-1573(97)00073-2.  Google Scholar

[22]

Y. S. Kivshar and X. Yang, Perturbation-induced dynamics of dark-solitons,, Phys. Rev. E, 49 (1994), 1657.  doi: 10.1103/PhysRevE.49.1657.  Google Scholar

[23]

V. V. Konotop and V. E. Vekslerchik, Direct peerturbation theory for dark solitons,, Phys. Rev. E, 49 (1994), 2397.  doi: 10.1103/PhysRevE.49.2397.  Google Scholar

[24]

W. Królikowski and O. Bang, Solitons in nonlocal nonlinear media: Exact solutions,, Phys. Rev. E, 63 (2000).  doi: 10.1103/PhysRevE.63.016610.  Google Scholar

[25]

A. G. Litvak, V. A. Mironov, G. M. Fraiman and A. D Yunakovskii, Thermal self-interaction of wave beams in a plasma with nonlocal nonlinearity,, Sov. J. Plasma Phys., 1 (1975), 60.   Google Scholar

[26]

S. F. Mingaleev, Y. B. Gaididei, E. Majernikova and S. Shpyrko, Kinks in the discrete sine-Gordon model with Kac-Baker long-range interactions,, Phys. Rev. E, 61 (2000), 4454.  doi: 10.1103/PhysRevE.61.4454.  Google Scholar

[27]

L. F. Mollenauer, R. H. Stolen and G. P. Gordon, Experimental observation of picosecond pulse narrowing and solitons in optical fibers,, Phys. Rev. Lett., 45 (1980), 1095.  doi: 10.1103/PhysRevLett.45.1095.  Google Scholar

[28]

H. Ono, Algebraic solitary waves in stratified fluids,, J. Phys. Soc. Japan, 39 (1975), 1082.  doi: 10.1143/JPSJ.39.1082.  Google Scholar

[29]

A. Parola, L. Salasnich and L. Reatto, Structure and stability of bosonic clouds: Alkali-metal atoms with negative scattering length,, Phys. Rev. A, 57 (1998).   Google Scholar

[30]

D. E. Pelinovsky, Y. S. Kivshar and V. V. Afanasjev, Instability-induced dynamics of dark solitons,, Phys. Rev. E, 54 (1996), 2015.  doi: 10.1103/PhysRevE.54.2015.  Google Scholar

[31]

D. Suter and T. Blasberg, Stabilisation of transverse solitary waves by a nonlocal response of the nonlinear medium,, Phys. Rev. A, 48 (1993), 4583.  doi: 10.1103/PhysRevA.48.4583.  Google Scholar

[32]

D. Usero and L. Vázquez, Ecuaciones no locales y modelos fraccionarios,, Revista de la Real Academia de Ciencias Exactas, 99 (2005), 203.   Google Scholar

[33]

N. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. and Quantum Elect., 16 (1973), 783.  doi: 10.1007/BF01031343.  Google Scholar

[34]

L. Vázquez, W. A. B. Evans and G. Rickayzen, Numerical investigation of a non-local sine-Gordon model,, Phys. Lett. A, 189 (1994), 454.  doi: 10.1016/0375-9601(94)91209-2.  Google Scholar

[35]

A. M. Weiner, J. P. Heritage, R. J. Hawkins, R. N. Thurston, E. M. Kirschner, D. E. Leaird and W. J. Tomlinson, Experimental observation of the fundamental dark soliton in optical fibers,, Phys. Rev. Lett., 61 (1988), 2445.  doi: 10.1103/PhysRevLett.61.2445.  Google Scholar

[36]

G. B. Whitham, "Linear and Nonlinear Waves,", Wiley Interscience, (1974).   Google Scholar

[1]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[4]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[6]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[12]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[17]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]