October  2011, 4(5): 1341-1357. doi: 10.3934/dcdss.2011.4.1341

Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities

1. 

Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom, United Kingdom

Received  September 2009 Revised  January 2010 Published  December 2010

This paper continues an investigation into a one-dimensional lattice equation that models the light field in a system comprised of a periodic array of pumped optical cavities with saturable nonlinearity. The additional effects of a spatial gradient of the phase of the pump field are studied, which in the presence of loss terms is shown to break the spatial reversibility of the steady problem. Unlike for continuum systems, small symmetry-breaking is argued to not lead directly to moving solitons, but there remains a pinning region in which there are infinitely many distinct stable stationary solitons of arbitrarily large width. These solitons are no-longer arranged in a homoclinic snaking bifurcation diagrams, but instead break up into discrete isolas. For large enough symmetry-breaking, the fold bifurcations of the lowest intensity solitons no longer overlap, which is argued to be the trigger point of moving localised structures. Due to the dissipative nature of the problem, any radiation shed by these structures is damped and so they appear to be true attractors. Careful direct numerical simulations reveal that branches of the moving solitons undergo unsual hysteresis with respect to the pump, for sufficiently large symmetry breaking.
Citation: Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341
References:
[1]

SIAM J. Math. Anal., 41 (2009), 936-972. doi: 10.1137/080713306.  Google Scholar

[2]

Phys. Rev. E, 80 (2009), 036202. doi: 10.1103/PhysRevE.80.036202.  Google Scholar

[3]

J. Burke and E. Knobloch, Multipulse states in the Swift-Hohenberg equation, Discrete Contin. Dyn. Syst. 2009,, in, (): 109.   Google Scholar

[4]

Chaos, 17 (2007), 037102. doi: 10.1063/1.2746816.  Google Scholar

[5]

Phys. Lett. A, 360 (2007), 681-688. doi: 10.1016/j.physleta.2006.08.072.  Google Scholar

[6]

Phys. Rev. Lett., 84 (2000), 3069-3072. doi: 10.1103/PhysRevLett.84.3069.  Google Scholar

[7]

Nonlinearity, 10 (1997), 1093-1114. doi: 10.1088/0951-7715/10/5/006.  Google Scholar

[8]

SIAM J. Appl. Dyn. Syst., 7 (2008), 186-206. doi: 10.1137/06067794X.  Google Scholar

[9]

Optics Express, 15 (2007), 4149-4158. doi: 10.1364/OE.15.004149.  Google Scholar

[10]

Phys. Rev. E, 72 (2005), 066603. doi: 10.1103/PhysRevE.72.066603.  Google Scholar

[11]

Phys. Rev. E, 71 (2005), 056612. doi: 10.1103/PhysRevE.71.056612.  Google Scholar

[12]

Phys. Rev. Lett., 102 (2009), 153904. doi: 10.1103/PhysRevLett.102.153904.  Google Scholar

[13]

Phys. Rev. Lett., 76 (1996), 1623-1626. doi: 10.1103/PhysRevLett.76.1623.  Google Scholar

[14]

Phys. Rev. A, 76 (2007), 043823. doi: 10.1103/PhysRevA.76.043823.  Google Scholar

[15]

Phys. Rev. E, 57 (1998), 229-303. doi: 10.1103/PhysRevE.57.299.  Google Scholar

[16]

Phys. Rev. Lett., 103 (2009), 128003. doi: 10.1103/PhysRevLett.103.128003.  Google Scholar

[17]

Springer, Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-89199-4.  Google Scholar

[18]

Physical Review E, 65 (2002), 046613. doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[19]

preprint (2009). Google Scholar

[20]

Phys. Rev. Lett., 97 (2006), 044502. doi: 10.1103/PhysRevLett.97.044502.  Google Scholar

[21]

Chaos, Solitons and Fractals, 5 (1995), 271-293. doi: 10.1016/0960-0779(93)E0022-4.  Google Scholar

[22]

SIAM J. Appl. Dyn. Sys., 7 (2008), 1049-1100. doi: 10.1137/070707622.  Google Scholar

[23]

Physica D, 237 (2008), 551-567. doi: 10.1016/j.physd.2007.09.026.  Google Scholar

[24]

Phys. Rev. Lett., 97 (2006), 124101. doi: 10.1103/PhysRevLett.97.124101.  Google Scholar

[25]

SIAM J. Appl. Dyn. Sys., 8 (2009), 689-709. doi: 10.1137/080715408.  Google Scholar

[26]

Phys. Rev. E, 76 (2007), 036603. doi: 10.1103/PhysRevE.76.036603.  Google Scholar

[27]

Appl. Phys. Lett., 92 (2008), 011101. doi: 10.1063/1.2828458.  Google Scholar

[28]

Physica D, 236 (2007), 22-43. doi: 10.1016/j.physd.2007.07.010.  Google Scholar

[29]

Optics Letters, 29 (2004), 1909-1911. doi: 10.1364/OL.29.001909.  Google Scholar

[30]

Physica D, 23 (1986), 3-11. doi: 10.1016/0167-2789(86)90104-1.  Google Scholar

[31]

J. Nonl. Sci., 9 (1999), 525-573. doi: 10.1007/s003329900078.  Google Scholar

[32]

Phys. Rev. Lett., 97 (2006), 204501. doi: 10.1103/PhysRevLett.97.204501.  Google Scholar

[33]

Physica D, 129 (1999), 147-170. doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

[34]

SIAM J Appl. Dyn. Sys., 9 (2010), 391-431.  Google Scholar

[35]

Phys. Rev. A, 78 (2008), 011804(R). doi: 10.1103/PhysRevA.78.011804.  Google Scholar

[36]

Phys. Rev. A, 78 (2008), 061801. doi: 10.1103/PhysRevA.78.061801.  Google Scholar

show all references

References:
[1]

SIAM J. Math. Anal., 41 (2009), 936-972. doi: 10.1137/080713306.  Google Scholar

[2]

Phys. Rev. E, 80 (2009), 036202. doi: 10.1103/PhysRevE.80.036202.  Google Scholar

[3]

J. Burke and E. Knobloch, Multipulse states in the Swift-Hohenberg equation, Discrete Contin. Dyn. Syst. 2009,, in, (): 109.   Google Scholar

[4]

Chaos, 17 (2007), 037102. doi: 10.1063/1.2746816.  Google Scholar

[5]

Phys. Lett. A, 360 (2007), 681-688. doi: 10.1016/j.physleta.2006.08.072.  Google Scholar

[6]

Phys. Rev. Lett., 84 (2000), 3069-3072. doi: 10.1103/PhysRevLett.84.3069.  Google Scholar

[7]

Nonlinearity, 10 (1997), 1093-1114. doi: 10.1088/0951-7715/10/5/006.  Google Scholar

[8]

SIAM J. Appl. Dyn. Syst., 7 (2008), 186-206. doi: 10.1137/06067794X.  Google Scholar

[9]

Optics Express, 15 (2007), 4149-4158. doi: 10.1364/OE.15.004149.  Google Scholar

[10]

Phys. Rev. E, 72 (2005), 066603. doi: 10.1103/PhysRevE.72.066603.  Google Scholar

[11]

Phys. Rev. E, 71 (2005), 056612. doi: 10.1103/PhysRevE.71.056612.  Google Scholar

[12]

Phys. Rev. Lett., 102 (2009), 153904. doi: 10.1103/PhysRevLett.102.153904.  Google Scholar

[13]

Phys. Rev. Lett., 76 (1996), 1623-1626. doi: 10.1103/PhysRevLett.76.1623.  Google Scholar

[14]

Phys. Rev. A, 76 (2007), 043823. doi: 10.1103/PhysRevA.76.043823.  Google Scholar

[15]

Phys. Rev. E, 57 (1998), 229-303. doi: 10.1103/PhysRevE.57.299.  Google Scholar

[16]

Phys. Rev. Lett., 103 (2009), 128003. doi: 10.1103/PhysRevLett.103.128003.  Google Scholar

[17]

Springer, Berlin Heidelberg, 2009. doi: 10.1007/978-3-540-89199-4.  Google Scholar

[18]

Physical Review E, 65 (2002), 046613. doi: 10.1103/PhysRevE.65.046613.  Google Scholar

[19]

preprint (2009). Google Scholar

[20]

Phys. Rev. Lett., 97 (2006), 044502. doi: 10.1103/PhysRevLett.97.044502.  Google Scholar

[21]

Chaos, Solitons and Fractals, 5 (1995), 271-293. doi: 10.1016/0960-0779(93)E0022-4.  Google Scholar

[22]

SIAM J. Appl. Dyn. Sys., 7 (2008), 1049-1100. doi: 10.1137/070707622.  Google Scholar

[23]

Physica D, 237 (2008), 551-567. doi: 10.1016/j.physd.2007.09.026.  Google Scholar

[24]

Phys. Rev. Lett., 97 (2006), 124101. doi: 10.1103/PhysRevLett.97.124101.  Google Scholar

[25]

SIAM J. Appl. Dyn. Sys., 8 (2009), 689-709. doi: 10.1137/080715408.  Google Scholar

[26]

Phys. Rev. E, 76 (2007), 036603. doi: 10.1103/PhysRevE.76.036603.  Google Scholar

[27]

Appl. Phys. Lett., 92 (2008), 011101. doi: 10.1063/1.2828458.  Google Scholar

[28]

Physica D, 236 (2007), 22-43. doi: 10.1016/j.physd.2007.07.010.  Google Scholar

[29]

Optics Letters, 29 (2004), 1909-1911. doi: 10.1364/OL.29.001909.  Google Scholar

[30]

Physica D, 23 (1986), 3-11. doi: 10.1016/0167-2789(86)90104-1.  Google Scholar

[31]

J. Nonl. Sci., 9 (1999), 525-573. doi: 10.1007/s003329900078.  Google Scholar

[32]

Phys. Rev. Lett., 97 (2006), 204501. doi: 10.1103/PhysRevLett.97.204501.  Google Scholar

[33]

Physica D, 129 (1999), 147-170. doi: 10.1016/S0167-2789(98)00309-1.  Google Scholar

[34]

SIAM J Appl. Dyn. Sys., 9 (2010), 391-431.  Google Scholar

[35]

Phys. Rev. A, 78 (2008), 011804(R). doi: 10.1103/PhysRevA.78.011804.  Google Scholar

[36]

Phys. Rev. A, 78 (2008), 061801. doi: 10.1103/PhysRevA.78.061801.  Google Scholar

[1]

Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063

[2]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[3]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[4]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[5]

Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867

[6]

Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1

[7]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[8]

Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042

[9]

Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511

[10]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381

[11]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[12]

Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61

[13]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075

[14]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[15]

Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049

[16]

Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023

[17]

Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010

[18]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[19]

José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030

[20]

Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021075

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]