- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Dark solitary waves in nonlocal nonlinear Schrödinger systems
Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities
1. | Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TR, United Kingdom, United Kingdom |
References:
[1] |
SIAM J. Math. Anal., 41 (2009), 936-972.
doi: 10.1137/080713306. |
[2] |
Phys. Rev. E, 80 (2009), 036202.
doi: 10.1103/PhysRevE.80.036202. |
[3] |
J. Burke and E. Knobloch, Multipulse states in the Swift-Hohenberg equation, Discrete Contin. Dyn. Syst. 2009,, in, (): 109.
|
[4] |
Chaos, 17 (2007), 037102.
doi: 10.1063/1.2746816. |
[5] |
Phys. Lett. A, 360 (2007), 681-688.
doi: 10.1016/j.physleta.2006.08.072. |
[6] |
Phys. Rev. Lett., 84 (2000), 3069-3072.
doi: 10.1103/PhysRevLett.84.3069. |
[7] |
Nonlinearity, 10 (1997), 1093-1114.
doi: 10.1088/0951-7715/10/5/006. |
[8] |
SIAM J. Appl. Dyn. Syst., 7 (2008), 186-206.
doi: 10.1137/06067794X. |
[9] |
Optics Express, 15 (2007), 4149-4158.
doi: 10.1364/OE.15.004149. |
[10] |
Phys. Rev. E, 72 (2005), 066603.
doi: 10.1103/PhysRevE.72.066603. |
[11] |
Phys. Rev. E, 71 (2005), 056612.
doi: 10.1103/PhysRevE.71.056612. |
[12] |
Phys. Rev. Lett., 102 (2009), 153904.
doi: 10.1103/PhysRevLett.102.153904. |
[13] |
Phys. Rev. Lett., 76 (1996), 1623-1626.
doi: 10.1103/PhysRevLett.76.1623. |
[14] |
Phys. Rev. A, 76 (2007), 043823.
doi: 10.1103/PhysRevA.76.043823. |
[15] |
Phys. Rev. E, 57 (1998), 229-303.
doi: 10.1103/PhysRevE.57.299. |
[16] |
Phys. Rev. Lett., 103 (2009), 128003.
doi: 10.1103/PhysRevLett.103.128003. |
[17] |
Springer, Berlin Heidelberg, 2009.
doi: 10.1007/978-3-540-89199-4. |
[18] |
Physical Review E, 65 (2002), 046613.
doi: 10.1103/PhysRevE.65.046613. |
[19] |
preprint (2009). Google Scholar |
[20] |
Phys. Rev. Lett., 97 (2006), 044502.
doi: 10.1103/PhysRevLett.97.044502. |
[21] |
Chaos, Solitons and Fractals, 5 (1995), 271-293.
doi: 10.1016/0960-0779(93)E0022-4. |
[22] |
SIAM J. Appl. Dyn. Sys., 7 (2008), 1049-1100.
doi: 10.1137/070707622. |
[23] |
Physica D, 237 (2008), 551-567.
doi: 10.1016/j.physd.2007.09.026. |
[24] |
Phys. Rev. Lett., 97 (2006), 124101.
doi: 10.1103/PhysRevLett.97.124101. |
[25] |
SIAM J. Appl. Dyn. Sys., 8 (2009), 689-709.
doi: 10.1137/080715408. |
[26] |
Phys. Rev. E, 76 (2007), 036603.
doi: 10.1103/PhysRevE.76.036603. |
[27] |
Appl. Phys. Lett., 92 (2008), 011101.
doi: 10.1063/1.2828458. |
[28] |
Physica D, 236 (2007), 22-43.
doi: 10.1016/j.physd.2007.07.010. |
[29] |
Optics Letters, 29 (2004), 1909-1911.
doi: 10.1364/OL.29.001909. |
[30] |
Physica D, 23 (1986), 3-11.
doi: 10.1016/0167-2789(86)90104-1. |
[31] |
J. Nonl. Sci., 9 (1999), 525-573.
doi: 10.1007/s003329900078. |
[32] |
Phys. Rev. Lett., 97 (2006), 204501.
doi: 10.1103/PhysRevLett.97.204501. |
[33] |
Physica D, 129 (1999), 147-170.
doi: 10.1016/S0167-2789(98)00309-1. |
[34] |
SIAM J Appl. Dyn. Sys., 9 (2010), 391-431. |
[35] |
Phys. Rev. A, 78 (2008), 011804(R).
doi: 10.1103/PhysRevA.78.011804. |
[36] |
Phys. Rev. A, 78 (2008), 061801.
doi: 10.1103/PhysRevA.78.061801. |
show all references
References:
[1] |
SIAM J. Math. Anal., 41 (2009), 936-972.
doi: 10.1137/080713306. |
[2] |
Phys. Rev. E, 80 (2009), 036202.
doi: 10.1103/PhysRevE.80.036202. |
[3] |
J. Burke and E. Knobloch, Multipulse states in the Swift-Hohenberg equation, Discrete Contin. Dyn. Syst. 2009,, in, (): 109.
|
[4] |
Chaos, 17 (2007), 037102.
doi: 10.1063/1.2746816. |
[5] |
Phys. Lett. A, 360 (2007), 681-688.
doi: 10.1016/j.physleta.2006.08.072. |
[6] |
Phys. Rev. Lett., 84 (2000), 3069-3072.
doi: 10.1103/PhysRevLett.84.3069. |
[7] |
Nonlinearity, 10 (1997), 1093-1114.
doi: 10.1088/0951-7715/10/5/006. |
[8] |
SIAM J. Appl. Dyn. Syst., 7 (2008), 186-206.
doi: 10.1137/06067794X. |
[9] |
Optics Express, 15 (2007), 4149-4158.
doi: 10.1364/OE.15.004149. |
[10] |
Phys. Rev. E, 72 (2005), 066603.
doi: 10.1103/PhysRevE.72.066603. |
[11] |
Phys. Rev. E, 71 (2005), 056612.
doi: 10.1103/PhysRevE.71.056612. |
[12] |
Phys. Rev. Lett., 102 (2009), 153904.
doi: 10.1103/PhysRevLett.102.153904. |
[13] |
Phys. Rev. Lett., 76 (1996), 1623-1626.
doi: 10.1103/PhysRevLett.76.1623. |
[14] |
Phys. Rev. A, 76 (2007), 043823.
doi: 10.1103/PhysRevA.76.043823. |
[15] |
Phys. Rev. E, 57 (1998), 229-303.
doi: 10.1103/PhysRevE.57.299. |
[16] |
Phys. Rev. Lett., 103 (2009), 128003.
doi: 10.1103/PhysRevLett.103.128003. |
[17] |
Springer, Berlin Heidelberg, 2009.
doi: 10.1007/978-3-540-89199-4. |
[18] |
Physical Review E, 65 (2002), 046613.
doi: 10.1103/PhysRevE.65.046613. |
[19] |
preprint (2009). Google Scholar |
[20] |
Phys. Rev. Lett., 97 (2006), 044502.
doi: 10.1103/PhysRevLett.97.044502. |
[21] |
Chaos, Solitons and Fractals, 5 (1995), 271-293.
doi: 10.1016/0960-0779(93)E0022-4. |
[22] |
SIAM J. Appl. Dyn. Sys., 7 (2008), 1049-1100.
doi: 10.1137/070707622. |
[23] |
Physica D, 237 (2008), 551-567.
doi: 10.1016/j.physd.2007.09.026. |
[24] |
Phys. Rev. Lett., 97 (2006), 124101.
doi: 10.1103/PhysRevLett.97.124101. |
[25] |
SIAM J. Appl. Dyn. Sys., 8 (2009), 689-709.
doi: 10.1137/080715408. |
[26] |
Phys. Rev. E, 76 (2007), 036603.
doi: 10.1103/PhysRevE.76.036603. |
[27] |
Appl. Phys. Lett., 92 (2008), 011101.
doi: 10.1063/1.2828458. |
[28] |
Physica D, 236 (2007), 22-43.
doi: 10.1016/j.physd.2007.07.010. |
[29] |
Optics Letters, 29 (2004), 1909-1911.
doi: 10.1364/OL.29.001909. |
[30] |
Physica D, 23 (1986), 3-11.
doi: 10.1016/0167-2789(86)90104-1. |
[31] |
J. Nonl. Sci., 9 (1999), 525-573.
doi: 10.1007/s003329900078. |
[32] |
Phys. Rev. Lett., 97 (2006), 204501.
doi: 10.1103/PhysRevLett.97.204501. |
[33] |
Physica D, 129 (1999), 147-170.
doi: 10.1016/S0167-2789(98)00309-1. |
[34] |
SIAM J Appl. Dyn. Sys., 9 (2010), 391-431. |
[35] |
Phys. Rev. A, 78 (2008), 011804(R).
doi: 10.1103/PhysRevA.78.011804. |
[36] |
Phys. Rev. A, 78 (2008), 061801.
doi: 10.1103/PhysRevA.78.061801. |
[1] |
Andrew Comech, Elena Kopylova. Orbital stability and spectral properties of solitary waves of Klein–Gordon equation with concentrated nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021063 |
[2] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008 |
[3] |
Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402 |
[4] |
Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226 |
[5] |
Dmitry Treschev. Travelling waves in FPU lattices. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 867-880. doi: 10.3934/dcds.2004.11.867 |
[6] |
Nikolaz Gourmelon. Generation of homoclinic tangencies by $C^1$-perturbations. Discrete & Continuous Dynamical Systems, 2010, 26 (1) : 1-42. doi: 10.3934/dcds.2010.26.1 |
[7] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[8] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[9] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[10] |
Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2677-2698. doi: 10.3934/dcds.2020381 |
[11] |
Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 |
[12] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[13] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075 |
[14] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[15] |
Yinsong Bai, Lin He, Huijiang Zhao. Nonlinear stability of rarefaction waves for a hyperbolic system with Cattaneo's law. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021049 |
[16] |
Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, , () : -. doi: 10.3934/era.2021023 |
[17] |
Sishu Shankar Muni, Robert I. McLachlan, David J. W. Simpson. Homoclinic tangencies with infinitely many asymptotically stable single-round periodic solutions. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3629-3650. doi: 10.3934/dcds.2021010 |
[18] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[19] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. On the existence and computation of periodic travelling waves for a 2D water wave model. Communications on Pure & Applied Analysis, 2018, 17 (2) : 557-578. doi: 10.3934/cpaa.2018030 |
[20] |
Bochao Chen, Yixian Gao. Quasi-periodic travelling waves for beam equations with damping on 3-dimensional rectangular tori. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021075 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]