\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Derivations in power-associative algebras

Abstract Related Papers Cited by
  • In this paper we investigate derivations of a commutative power-associative algebra. Particular cases of stable and partially stable algebras are inspected. Some attention is paid to the Jordan case. Further results are given. Especially, we show that the core of a $n^{th}$-order Bernstein algebra which is power-associative is a Jordan algebra.
    Mathematics Subject Classification: Primary: 17A05, 17D92; Secondary: 17A36.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. T. Alcalde, C. Burgueño, A. Labra and A. Micali, Sur les algèbres de Bernstein, Proc. Lond. Math. Soc., III. Ser., 58 (1989), 51-68.

    [2]

    A. A. Albert, A theory of power-associative commutative algebras, Trans. Amer. Math. Soc., 69 (1950), 503-527.

    [3]

    J. Bayara, A. Conseibo, M. Ouattara and F. Zitan, Power-associative algebras that are train algebras, J. Algebra, 324 (2010), 1159-1176.doi: 10.1016/j.jalgebra.2010.06.012.

    [4]

    I. M. H. Etherington, Genetic algebras, Proc. R. Soc. Edinb., 59 (1939), 242-258.

    [5]

    M. A. García-Muñiz and S. González, Weighted, Bernstein and Jordan algebras, Comm. Algebra, 26 (1998), 913-930.doi: 10.1080/00927879808826173.

    [6]

    M. A. García-Muñiz and C. Martínez, Derivations in second order Bernstein algebras, in "Nonassociative Algebra and its Applications" (eds. Costa, Roberto and al.), Proceedings of the fourth international conference, São Paulo, Brazil. New York, NY: Marcel Dekker; Lect. Notes Pure Appl. Math., 211 (2000), 105-124.

    [7]

    H. Gonshor, Derivations in genetic algebras, Comm. Algebra, 16 (1988), 1525-1542.doi: 10.1080/00927879808823643.

    [8]

    H. Guzzo Jr. and P. Vicente, Derivations in $n$th-order Bernstein algebras, Int. J. Math. Game Theory Algebra, 12 (2002), 171-185.

    [9]

    H. Guzzo Jr. and P. Vicente, Derivatives in $n$th-order Bernstein algebras. II, Algebras Groups Geom., 19 (2002), 423-444.

    [10]

    P. Holgate, The interpretation of derivations in genetic algebras, Linear Algebra Appl., 85 (1987), 75-79.doi: 10.1016/0024-3795(87)90209-6.

    [11]

    N. Jacobson, "Structure and Representations of Jordan Algebras," Amer. Math. Soc. Colloquium Pulications 39, 1968.

    [12]

    L. A. Kokoris, Simple power-associative algebras of degree two, Ann. of Math. (3), 64 (1956), 544-550.doi: 10.2307/1969601.

    [13]

    L. A. Kokoris, New results on power-associative algebras, Ann. of Math. (3), 77 (1954), 363-373.

    [14]

    C. Mallol, A. Micali and M. Ouattara, Sur les algèbres de Bernstein IV, Linear Algebra Appl., 158 (1991), 1-26.doi: 10.1016/0024-3795(91)90048-2.

    [15]

    A. Micali and M. Ouattara, Sur la dupliquée d'une algèbre. II, Bull. Soc. Math. Belg., Sér. A, 43 (1991), 113-125.

    [16]

    M. Ouattara, Sur une classe d'algèbres à puissances associatives, Linear Algebra Appl., 235 (1996), 47-62.doi: 10.1016/0024-3795(94)00113-8.

    [17]

    J. M. Osborn, Varieties of algebras, Adv. Math., 8 (1972), 163-369.doi: 10.1016/0001-8708(72)90003-5.

    [18]

    M. L. Reed, Algebraic structure of genetic inheritance, Bull. Amer. Math. Soc., 34 (1997), 107-130.doi: 10.1090/S0273-0979-97-00712-X.

    [19]

    R. D. Schafer, "An Introduction to Nonassociative Algebras," Academic Press, New York, 1966.

    [20]

    J. Tits, A theorem on generic norms of strictly power associative algebras, Proc. Amer. Math. Soc., 15 (1964), 35-36.doi: 10.1090/S0002-9939-1964-0158912-0.

    [21]

    D. A. Towers and K. Bowman, On power associative Bernstein algebras of arbitrary order, Algebras, Groups and Geometries, 13 (1996), 295-322.

    [22]

    S. Walcher, Bernstein algebras which are Jordan algebras, Arch. Math., 50 (1988), 218-222.doi: 10.1007/BF01187737.

    [23]

    A. Wörz-Busekros, "Algebras in Genetics," Lecture Notes in Biomathematics, 36, Springer-Verlag, Berlin-New York, 1980.

    [24]

    K. A. Zhevlakov, A. M. Slin'ko, I. P. Shestakov and A. I. Shirshov, "Rings that are Nearly Associative," Academic Press, New York, 1982.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(103) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return