December  2011, 4(6): 1387-1399. doi: 10.3934/dcdss.2011.4.1387

Polynomial identities for ternary intermolecular recombination

1. 

Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

Received  March 2009 Revised  September 2009 Published  December 2010

The operation of binary intermolecular recombination, originating in the theory of DNA computing, permits a natural generalization to $n$-ary operations which perform simultaneous recombination of $n$ molecules. In the case $n = 3$, we use computer algebra to determine the polynomial identities of degree $\le 9$ satisfied by this trilinear nonassociative operation. Our approach requires computing a basis for the nullspace of a large integer matrix, and for this we compare two methods: the row canonical form, and the Hermite normal form with lattice basis reduction. In the conclusion, we formulate some conjectures for the general case of $n$-ary intermolecular recombination.
Citation: Murray R. Bremner. Polynomial identities for ternary intermolecular recombination. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1387-1399. doi: 10.3934/dcdss.2011.4.1387
References:
[1]

M. R. Bremner, Jordan algebras arising from intermolecular recombination,, SIGSAM Bulletin (Communications in Computer Algebra), 39 (2005), 106. doi: 10.1145/1140378.1140380. Google Scholar

[2]

M. R. Bremner and I. R. Hentzel, Identities for generalized Lie and Jordan products on totally associative triple systems,, Journal of Algebra, 231 (2000), 387. doi: 10.1006/jabr.2000.8372. Google Scholar

[3]

M. R. Bremner and L. A. Peresi, An application of lattice basis reduction to polynomial identitites for algebraic systems,, Linear Algebra and its Applications, 430 (2009), 642. doi: 10.1016/j.laa.2008.09.003. Google Scholar

[4]

M. R. Bremner, Y. F. Piao and S. W. Richards, Polynomial identities for Bernstein algebras of simple Mendelian inheritance,, Communications in Algebra, 37 (2009), 3438. doi: 10.1080/00927870802502886. Google Scholar

[5]

L. Landweber and L. Kari, The evolution of cellular computing: nature's solution to a computational problem,, Biosystems, 52 (1999), 3. doi: 10.1016/S0303-2647(99)00027-1. Google Scholar

[6]

S. R. Sverchkov, Structure and representations of Jordan algebras arising from intermolecular recombination,, in, 483 (2009), 261. Google Scholar

[7]

S. R. Sverchkov, Algebraic theory of DNA recombination,, Jordan Theory Preprint Archives (\url{http://homepage.uibk.ac.at/ c70202/jordan/}), (2009). Google Scholar

[8]

I. M. Wanless, Permanents,, in, (2007). Google Scholar

show all references

References:
[1]

M. R. Bremner, Jordan algebras arising from intermolecular recombination,, SIGSAM Bulletin (Communications in Computer Algebra), 39 (2005), 106. doi: 10.1145/1140378.1140380. Google Scholar

[2]

M. R. Bremner and I. R. Hentzel, Identities for generalized Lie and Jordan products on totally associative triple systems,, Journal of Algebra, 231 (2000), 387. doi: 10.1006/jabr.2000.8372. Google Scholar

[3]

M. R. Bremner and L. A. Peresi, An application of lattice basis reduction to polynomial identitites for algebraic systems,, Linear Algebra and its Applications, 430 (2009), 642. doi: 10.1016/j.laa.2008.09.003. Google Scholar

[4]

M. R. Bremner, Y. F. Piao and S. W. Richards, Polynomial identities for Bernstein algebras of simple Mendelian inheritance,, Communications in Algebra, 37 (2009), 3438. doi: 10.1080/00927870802502886. Google Scholar

[5]

L. Landweber and L. Kari, The evolution of cellular computing: nature's solution to a computational problem,, Biosystems, 52 (1999), 3. doi: 10.1016/S0303-2647(99)00027-1. Google Scholar

[6]

S. R. Sverchkov, Structure and representations of Jordan algebras arising from intermolecular recombination,, in, 483 (2009), 261. Google Scholar

[7]

S. R. Sverchkov, Algebraic theory of DNA recombination,, Jordan Theory Preprint Archives (\url{http://homepage.uibk.ac.at/ c70202/jordan/}), (2009). Google Scholar

[8]

I. M. Wanless, Permanents,, in, (2007). Google Scholar

[1]

Thomas Espitau, Antoine Joux. Certified lattice reduction. Advances in Mathematics of Communications, 2020, 14 (1) : 137-159. doi: 10.3934/amc.2020011

[2]

Vivi Rottschäfer. Multi-bump patterns by a normal form approach. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 363-386. doi: 10.3934/dcdsb.2001.1.363

[3]

Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 643-666. doi: 10.3934/dcdss.2010.3.643

[4]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[5]

Ricardo Diaz and Sinai Robins. The Ehrhart polynomial of a lattice n -simplex. Electronic Research Announcements, 1996, 2: 1-6.

[6]

Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362-372. doi: 10.3934/proc.2011.2011.362

[7]

Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2561-2593. doi: 10.3934/dcdsb.2012.17.2561

[8]

John Burke, Edgar Knobloch. Normal form for spatial dynamics in the Swift-Hohenberg equation. Conference Publications, 2007, 2007 (Special) : 170-180. doi: 10.3934/proc.2007.2007.170

[9]

Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semi-bent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725-741. doi: 10.3934/amc.2016037

[10]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[11]

Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial & Management Optimization, 2008, 4 (2) : 271-285. doi: 10.3934/jimo.2008.4.271

[12]

Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 345-360. doi: 10.3934/dcds.2016.36.345

[13]

Stefan Siegmund. Normal form of Duffing-van der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357-361. doi: 10.3934/proc.2001.2001.357

[14]

Svetlana Bunimovich-Mendrazitsky, Yakov Goltser. Use of quasi-normal form to examine stability of tumor-free equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529-547. doi: 10.3934/mbe.2011.8.529

[15]

Anna Erschler. Iterated identities and iterational depth of groups. Journal of Modern Dynamics, 2015, 9: 257-284. doi: 10.3934/jmd.2015.9.257

[16]

Pavel Etingof and Alexander Kirillov Jr.. On Cherednik-Macdonald-Mehta identities. Electronic Research Announcements, 1998, 4: 43-47.

[17]

Tahar Z. Boulmezaoud, Amel Kourta. Some identities on weighted Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 427-434. doi: 10.3934/dcdss.2012.5.427

[18]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[19]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Phase portraits of linear type centers of polynomial Hamiltonian systems with Hamiltonian function of degree 5 of the form $ H = H_1(x)+H_2(y)$. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 75-113. doi: 10.3934/dcds.2019004

[20]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]