
Previous Article
Topological symmetry groups of $K_{4r+3}$
 DCDSS Home
 This Issue

Next Article
Train algebras of degree 2 and exponent 3
Polynomial identities for ternary intermolecular recombination
1.  Department of Mathematics and Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada 
References:
[1] 
M. R. Bremner, Jordan algebras arising from intermolecular recombination, SIGSAM Bulletin (Communications in Computer Algebra), 39 (2005), 106117. doi: 10.1145/1140378.1140380. 
[2] 
M. R. Bremner and I. R. Hentzel, Identities for generalized Lie and Jordan products on totally associative triple systems, Journal of Algebra, 231 (2000), 387405. doi: 10.1006/jabr.2000.8372. 
[3] 
M. R. Bremner and L. A. Peresi, An application of lattice basis reduction to polynomial identitites for algebraic systems, Linear Algebra and its Applications, 430 (2009), 642659. doi: 10.1016/j.laa.2008.09.003. 
[4] 
M. R. Bremner, Y. F. Piao and S. W. Richards, Polynomial identities for Bernstein algebras of simple Mendelian inheritance, Communications in Algebra, 37 (2009), 34383455. doi: 10.1080/00927870802502886. 
[5] 
L. Landweber and L. Kari, The evolution of cellular computing: nature's solution to a computational problem, Biosystems, 52 (1999), 313. doi: 10.1016/S03032647(99)000271. 
[6] 
S. R. Sverchkov, Structure and representations of Jordan algebras arising from intermolecular recombination, in "Algebras, Representations and Applications" (edited by V. Futorny, V. Kac, I. Kashuba and E. Zelmanov), Contemporary Mathematics, American Mathematical Society, 483 (2009), 261285. 
[7] 
S. R. Sverchkov, Algebraic theory of DNA recombination, Jordan Theory Preprint Archives (http://homepage.uibk.ac.at/ c70202/jordan/), Preprint 278, 14 October 2009, 20 pages. 
[8] 
I. M. Wanless, Permanents, in "Handbook of Linear Algebra," (edited by L. Hogben), Chapman & Hall / CRC, 2007, Chapter 31. 
show all references
References:
[1] 
M. R. Bremner, Jordan algebras arising from intermolecular recombination, SIGSAM Bulletin (Communications in Computer Algebra), 39 (2005), 106117. doi: 10.1145/1140378.1140380. 
[2] 
M. R. Bremner and I. R. Hentzel, Identities for generalized Lie and Jordan products on totally associative triple systems, Journal of Algebra, 231 (2000), 387405. doi: 10.1006/jabr.2000.8372. 
[3] 
M. R. Bremner and L. A. Peresi, An application of lattice basis reduction to polynomial identitites for algebraic systems, Linear Algebra and its Applications, 430 (2009), 642659. doi: 10.1016/j.laa.2008.09.003. 
[4] 
M. R. Bremner, Y. F. Piao and S. W. Richards, Polynomial identities for Bernstein algebras of simple Mendelian inheritance, Communications in Algebra, 37 (2009), 34383455. doi: 10.1080/00927870802502886. 
[5] 
L. Landweber and L. Kari, The evolution of cellular computing: nature's solution to a computational problem, Biosystems, 52 (1999), 313. doi: 10.1016/S03032647(99)000271. 
[6] 
S. R. Sverchkov, Structure and representations of Jordan algebras arising from intermolecular recombination, in "Algebras, Representations and Applications" (edited by V. Futorny, V. Kac, I. Kashuba and E. Zelmanov), Contemporary Mathematics, American Mathematical Society, 483 (2009), 261285. 
[7] 
S. R. Sverchkov, Algebraic theory of DNA recombination, Jordan Theory Preprint Archives (http://homepage.uibk.ac.at/ c70202/jordan/), Preprint 278, 14 October 2009, 20 pages. 
[8] 
I. M. Wanless, Permanents, in "Handbook of Linear Algebra," (edited by L. Hogben), Chapman & Hall / CRC, 2007, Chapter 31. 
[1] 
Thomas Espitau, Antoine Joux. Certified lattice reduction. Advances in Mathematics of Communications, 2020, 14 (1) : 137159. doi: 10.3934/amc.2020011 
[2] 
Vivi Rottschäfer. Multibump patterns by a normal form approach. Discrete and Continuous Dynamical Systems  B, 2001, 1 (3) : 363386. doi: 10.3934/dcdsb.2001.1.363 
[3] 
Todor Mitev, Georgi Popov. Gevrey normal form and effective stability of Lagrangian tori. Discrete and Continuous Dynamical Systems  S, 2010, 3 (4) : 643666. doi: 10.3934/dcdss.2010.3.643 
[4] 
Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems  B, 2002, 2 (1) : 109128. doi: 10.3934/dcdsb.2002.2.109 
[5] 
Ricardo Diaz and Sinai Robins. The Ehrhart polynomial of a lattice n simplex. Electronic Research Announcements, 1996, 2: 16. 
[6] 
Virginie De Witte, Willy Govaerts. Numerical computation of normal form coefficients of bifurcations of odes in MATLAB. Conference Publications, 2011, 2011 (Special) : 362372. doi: 10.3934/proc.2011.2011.362 
[7] 
Letizia Stefanelli, Ugo Locatelli. Kolmogorov's normal form for equations of motion with dissipative effects. Discrete and Continuous Dynamical Systems  B, 2012, 17 (7) : 25612593. doi: 10.3934/dcdsb.2012.17.2561 
[8] 
John Burke, Edgar Knobloch. Normal form for spatial dynamics in the SwiftHohenberg equation. Conference Publications, 2007, 2007 (Special) : 170180. doi: 10.3934/proc.2007.2007.170 
[9] 
Gabriela Jaramillo. Rotating spirals in oscillatory media with nonlocal interactions and their normal form. Discrete and Continuous Dynamical Systems  S, 2022, 15 (9) : 25132551. doi: 10.3934/dcdss.2022085 
[10] 
Gerhard Kirsten. Multilinear PODDEIM model reduction for 2D and 3D semilinear systems of differential equations. Journal of Computational Dynamics, 2022, 9 (2) : 159183. doi: 10.3934/jcd.2021025 
[11] 
Xiwang Cao, Hao Chen, Sihem Mesnager. Further results on semibent functions in polynomial form. Advances in Mathematics of Communications, 2016, 10 (4) : 725741. doi: 10.3934/amc.2016037 
[12] 
Zhong Wan, Chunhua Yang. New approach to global minimization of normal multivariate polynomial based on tensor. Journal of Industrial and Management Optimization, 2008, 4 (2) : 271285. doi: 10.3934/jimo.2008.4.271 
[13] 
Weigu Li, Jaume Llibre, Hao Wu. Polynomial and linearized normal forms for almost periodic differential systems. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 345360. doi: 10.3934/dcds.2016.36.345 
[14] 
Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 29492977. doi: 10.3934/dcds.2015.35.2949 
[15] 
Stefan Siegmund. Normal form of Duffingvan der Pol oscillator under nonautonomous parametric perturbations. Conference Publications, 2001, 2001 (Special) : 357361. doi: 10.3934/proc.2001.2001.357 
[16] 
Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the BenjaminOno equation having expansions in terms of pseudodifferential operators. Discrete and Continuous Dynamical Systems, 2022, 42 (9) : 41274201. doi: 10.3934/dcds.2022048 
[17] 
Xiu Ye, Shangyou Zhang. A new weak gradient for the stabilizer free weak Galerkin method with polynomial reduction. Discrete and Continuous Dynamical Systems  B, 2021, 26 (8) : 41314145. doi: 10.3934/dcdsb.2020277 
[18] 
Svetlana BunimovichMendrazitsky, Yakov Goltser. Use of quasinormal form to examine stability of tumorfree equilibrium in a mathematical model of bcg treatment of bladder cancer. Mathematical Biosciences & Engineering, 2011, 8 (2) : 529547. doi: 10.3934/mbe.2011.8.529 
[19] 
Kazuyuki Yagasaki. Existence of finite time blowup solutions in a normal form of the subcritical Hopf bifurcation with timedelayed feedback for small initial functions. Discrete and Continuous Dynamical Systems  B, 2022, 27 (5) : 26212634. doi: 10.3934/dcdsb.2021151 
[20] 
Anna Erschler. Iterated identities and iterational depth of groups. Journal of Modern Dynamics, 2015, 9: 257284. doi: 10.3934/jmd.2015.9.257 
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]