December  2011, 4(6): 1401-1411. doi: 10.3934/dcdss.2011.4.1401

Topological symmetry groups of $K_{4r+3}$

1. 

Department of Mathematics, Claremont Graduate University, Claremont, CA 91711, United States

2. 

Department of Mathematics, Pomona College, Claremont, CA 91711, United States

3. 

Centre for Genomics and Global Health, Oxford University, Oxford OX3 7BN, United Kingdom

Received  February 2009 Revised  October 2009 Published  December 2010

We present the concept of the topological symmetry group as a way to analyze the symmetries of non-rigid molecules. Then we characterize all of the groups which can occur as the topological symmetry group of an embedding of a complete graph of the form $K_{4r+3}$ in $S^3$.
Citation: Dwayne Chambers, Erica Flapan, John D. O'Brien. Topological symmetry groups of $K_{4r+3}$. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1401-1411. doi: 10.3934/dcdss.2011.4.1401
References:
[1]

M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds,, Ann. of Math., 162 (2005), 195.  doi: 10.4007/annals.2005.162.195.  Google Scholar

[2]

E. Flapan, Rigidity of graph symmetries in the $3$-sphere,, Journal of Knot Theory and its Ramifications, 4 (1995), 373.  doi: 10.1142/S0218216595000181.  Google Scholar

[3]

E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().   Google Scholar

[4]

E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().   Google Scholar

[5]

E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere,, Commentarii Mathematici Helvetici, 80 (2005), 317.  doi: 10.4171/CMH/16.  Google Scholar

[6]

E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere,, Journal of the London Mathematical Society, 73 (2006), 237.  doi: 10.1112/S0024610705022490.  Google Scholar

[7]

P. A. Smith, Transformations of finite period II,, Annals of Math., 40 (1939), 690.  doi: 10.2307/1968950.  Google Scholar

show all references

References:
[1]

M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds,, Ann. of Math., 162 (2005), 195.  doi: 10.4007/annals.2005.162.195.  Google Scholar

[2]

E. Flapan, Rigidity of graph symmetries in the $3$-sphere,, Journal of Knot Theory and its Ramifications, 4 (1995), 373.  doi: 10.1142/S0218216595000181.  Google Scholar

[3]

E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().   Google Scholar

[4]

E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().   Google Scholar

[5]

E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere,, Commentarii Mathematici Helvetici, 80 (2005), 317.  doi: 10.4171/CMH/16.  Google Scholar

[6]

E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere,, Journal of the London Mathematical Society, 73 (2006), 237.  doi: 10.1112/S0024610705022490.  Google Scholar

[7]

P. A. Smith, Transformations of finite period II,, Annals of Math., 40 (1939), 690.  doi: 10.2307/1968950.  Google Scholar

[1]

Irina Berezovik, Carlos García-Azpeitia, Wieslaw Krawcewicz. Symmetries of nonlinear vibrations in tetrahedral molecular configurations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2473-2491. doi: 10.3934/dcdsb.2018261

[2]

Peter Hinow, Edward A. Rietman, Sara Ibrahim Omar, Jack A. Tuszyński. Algebraic and topological indices of molecular pathway networks in human cancers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1289-1302. doi: 10.3934/mbe.2015.12.1289

[3]

Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435

[4]

Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779

[5]

Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144

[6]

Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129

[7]

Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629

[8]

Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25

[9]

Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67

[10]

Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753

[11]

Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044

[12]

José F. Cariñena, Fernando Falceto, Manuel F. Rañada. Canonoid transformations and master symmetries. Journal of Geometric Mechanics, 2013, 5 (2) : 151-166. doi: 10.3934/jgm.2013.5.151

[13]

Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082

[14]

Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799

[15]

Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568

[16]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[17]

Amarjit Budhiraja, John Fricks. Molecular motors, Brownian ratchets, and reflected diffusions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 711-734. doi: 10.3934/dcdsb.2006.6.711

[18]

Hirotada Honda. On a model of target detection in molecular communication networks. Networks & Heterogeneous Media, 2019, 14 (4) : 633-657. doi: 10.3934/nhm.2019025

[19]

Litao Guo, Bernard L. S. Lin. Vulnerability of super connected split graphs and bisplit graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1179-1185. doi: 10.3934/dcdss.2019081

[20]

Chris Good, Sergio Macías. What is topological about topological dynamics?. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1007-1031. doi: 10.3934/dcds.2018043

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]