December  2011, 4(6): 1401-1411. doi: 10.3934/dcdss.2011.4.1401

Topological symmetry groups of $K_{4r+3}$

1. 

Department of Mathematics, Claremont Graduate University, Claremont, CA 91711, United States

2. 

Department of Mathematics, Pomona College, Claremont, CA 91711, United States

3. 

Centre for Genomics and Global Health, Oxford University, Oxford OX3 7BN, United Kingdom

Received  February 2009 Revised  October 2009 Published  December 2010

We present the concept of the topological symmetry group as a way to analyze the symmetries of non-rigid molecules. Then we characterize all of the groups which can occur as the topological symmetry group of an embedding of a complete graph of the form $K_{4r+3}$ in $S^3$.
Citation: Dwayne Chambers, Erica Flapan, John D. O'Brien. Topological symmetry groups of $K_{4r+3}$. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1401-1411. doi: 10.3934/dcdss.2011.4.1401
References:
[1]

M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds,, Ann. of Math., 162 (2005), 195.  doi: 10.4007/annals.2005.162.195.  Google Scholar

[2]

E. Flapan, Rigidity of graph symmetries in the $3$-sphere,, Journal of Knot Theory and its Ramifications, 4 (1995), 373.  doi: 10.1142/S0218216595000181.  Google Scholar

[3]

E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().   Google Scholar

[4]

E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().   Google Scholar

[5]

E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere,, Commentarii Mathematici Helvetici, 80 (2005), 317.  doi: 10.4171/CMH/16.  Google Scholar

[6]

E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere,, Journal of the London Mathematical Society, 73 (2006), 237.  doi: 10.1112/S0024610705022490.  Google Scholar

[7]

P. A. Smith, Transformations of finite period II,, Annals of Math., 40 (1939), 690.  doi: 10.2307/1968950.  Google Scholar

show all references

References:
[1]

M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds,, Ann. of Math., 162 (2005), 195.  doi: 10.4007/annals.2005.162.195.  Google Scholar

[2]

E. Flapan, Rigidity of graph symmetries in the $3$-sphere,, Journal of Knot Theory and its Ramifications, 4 (1995), 373.  doi: 10.1142/S0218216595000181.  Google Scholar

[3]

E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().   Google Scholar

[4]

E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().   Google Scholar

[5]

E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere,, Commentarii Mathematici Helvetici, 80 (2005), 317.  doi: 10.4171/CMH/16.  Google Scholar

[6]

E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere,, Journal of the London Mathematical Society, 73 (2006), 237.  doi: 10.1112/S0024610705022490.  Google Scholar

[7]

P. A. Smith, Transformations of finite period II,, Annals of Math., 40 (1939), 690.  doi: 10.2307/1968950.  Google Scholar

[1]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[2]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[3]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[4]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[5]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[6]

Xiangrui Meng, Jian Gao. Complete weight enumerator of torsion codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020124

[7]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[8]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[9]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350

[10]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[11]

Dandan Wang, Xiwang Cao, Gaojun Luo. A class of linear codes and their complete weight enumerators. Advances in Mathematics of Communications, 2021, 15 (1) : 73-97. doi: 10.3934/amc.2020044

[12]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[13]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[14]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[15]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (79)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]