-
Previous Article
Multiple stable steady states of a reaction-diffusion model on zebrafish dorsal-ventral patterning
- DCDS-S Home
- This Issue
-
Next Article
Polynomial identities for ternary intermolecular recombination
Topological symmetry groups of $K_{4r+3}$
1. | Department of Mathematics, Claremont Graduate University, Claremont, CA 91711, United States |
2. | Department of Mathematics, Pomona College, Claremont, CA 91711, United States |
3. | Centre for Genomics and Global Health, Oxford University, Oxford OX3 7BN, United Kingdom |
References:
[1] |
M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds, Ann. of Math., 162 (2005), 195-290.
doi: 10.4007/annals.2005.162.195. |
[2] |
E. Flapan, Rigidity of graph symmetries in the $3$-sphere, Journal of Knot Theory and its Ramifications, 4 (1995), 373-388.
doi: 10.1142/S0218216595000181. |
[3] |
E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().
|
[4] |
E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().
|
[5] |
E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere, Commentarii Mathematici Helvetici, 80 (2005), 317-354.
doi: 10.4171/CMH/16. |
[6] |
E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere, Journal of the London Mathematical Society, 73 (2006), 237-251.
doi: 10.1112/S0024610705022490. |
[7] |
P. A. Smith, Transformations of finite period II, Annals of Math., 40 (1939), 690-711.
doi: 10.2307/1968950. |
show all references
References:
[1] |
M. Boileau, B. Leeb and J. Porti, Geometrization of $3$-dimensional orbifolds, Ann. of Math., 162 (2005), 195-290.
doi: 10.4007/annals.2005.162.195. |
[2] |
E. Flapan, Rigidity of graph symmetries in the $3$-sphere, Journal of Knot Theory and its Ramifications, 4 (1995), 373-388.
doi: 10.1142/S0218216595000181. |
[3] |
E. Flapan, B. Mellor and R. Naimi, Spatial graphs with local knots,, \arXiv{1010.0479}., ().
|
[4] |
E. Flapan, B. Mellor and R. Naimi, Complete graphs whose topological symmetry groups are polyhedral,, \arXiv{1008.1095}., ().
|
[5] |
E. Flapan, R. Naimi, J. Pommersheim and H. Tamvakis, Topological symmetry groups of embedded graphs in the $3$-sphere, Commentarii Mathematici Helvetici, 80 (2005), 317-354.
doi: 10.4171/CMH/16. |
[6] |
E. Flapan, R. Naimi and H. Tamvakis, Topological symmetry groups of complete graphs in the $3$-sphere, Journal of the London Mathematical Society, 73 (2006), 237-251.
doi: 10.1112/S0024610705022490. |
[7] |
P. A. Smith, Transformations of finite period II, Annals of Math., 40 (1939), 690-711.
doi: 10.2307/1968950. |
[1] |
Muhammad Aamer Rashid, Sarfraz Ahmad, Muhammad Kamran Siddiqui, Juan L. G. Guirao, Najma Abdul Rehman. Topological indices of discrete molecular structure. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2487-2495. doi: 10.3934/dcdss.2020418 |
[2] |
Irina Berezovik, Carlos García-Azpeitia, Wieslaw Krawcewicz. Symmetries of nonlinear vibrations in tetrahedral molecular configurations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2473-2491. doi: 10.3934/dcdsb.2018261 |
[3] |
Peter Hinow, Edward A. Rietman, Sara Ibrahim Omar, Jack A. Tuszyński. Algebraic and topological indices of molecular pathway networks in human cancers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1289-1302. doi: 10.3934/mbe.2015.12.1289 |
[4] |
Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure and Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435 |
[5] |
Álvaro Bustos. Extended symmetry groups of multidimensional subshifts with hierarchical structure. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5869-5895. doi: 10.3934/dcds.2020250 |
[6] |
Michel Coornaert, Fabrice Krieger. Mean topological dimension for actions of discrete amenable groups. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 779-793. doi: 10.3934/dcds.2005.13.779 |
[7] |
Adriano Da Silva, Alexandre J. Santana, Simão N. Stelmastchuk. Topological conjugacy of linear systems on Lie groups. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3411-3421. doi: 10.3934/dcds.2017144 |
[8] |
Cristóbal Camarero, Carmen Martínez, Ramón Beivide. Identifying codes of degree 4 Cayley graphs over Abelian groups. Advances in Mathematics of Communications, 2015, 9 (2) : 129-148. doi: 10.3934/amc.2015.9.129 |
[9] |
Daniel Wilczak, Piotr Zgliczyński. Topological method for symmetric periodic orbits for maps with a reversing symmetry. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 629-652. doi: 10.3934/dcds.2007.17.629 |
[10] |
Kurt Vinhage. On the rigidity of Weyl chamber flows and Schur multipliers as topological groups. Journal of Modern Dynamics, 2015, 9: 25-49. doi: 10.3934/jmd.2015.9.25 |
[11] |
Nicolás Matte Bon. Topological full groups of minimal subshifts with subgroups of intermediate growth. Journal of Modern Dynamics, 2015, 9: 67-80. doi: 10.3934/jmd.2015.9.67 |
[12] |
Kengo Matsumoto. Cohomology groups, continuous full groups and continuous orbit equivalence of topological Markov shifts. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 841-862. doi: 10.3934/dcds.2021139 |
[13] |
Kengo Matsumoto. K-groups of the full group actions on one-sided topological Markov shifts. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3753-3765. doi: 10.3934/dcds.2013.33.3753 |
[14] |
Wen-Xiu Ma. Conservation laws by symmetries and adjoint symmetries. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 707-721. doi: 10.3934/dcdss.2018044 |
[15] |
José F. Cariñena, Fernando Falceto, Manuel F. Rañada. Canonoid transformations and master symmetries. Journal of Geometric Mechanics, 2013, 5 (2) : 151-166. doi: 10.3934/jgm.2013.5.151 |
[16] |
Miriam Manoel, Patrícia Tempesta. Binary differential equations with symmetries. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1957-1974. doi: 10.3934/dcds.2019082 |
[17] |
Wenxiong Chen, Congming Li. Harmonic maps on complete manifolds. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 799-804. doi: 10.3934/dcds.1999.5.799 |
[18] |
Paula Kemp. Fixed points and complete lattices. Conference Publications, 2007, 2007 (Special) : 568-572. doi: 10.3934/proc.2007.2007.568 |
[19] |
Hirotada Honda. On a model of target detection in molecular communication networks. Networks and Heterogeneous Media, 2019, 14 (4) : 633-657. doi: 10.3934/nhm.2019025 |
[20] |
Amarjit Budhiraja, John Fricks. Molecular motors, Brownian ratchets, and reflected diffusions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 711-734. doi: 10.3934/dcdsb.2006.6.711 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]