# American Institute of Mathematical Sciences

December  2011, 4(6): 1511-1532. doi: 10.3934/dcdss.2011.4.1511

## Nongeneric bifurcations near heterodimensional cycles with inclination flip in $\mathbb{R}^4$

 1 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China 2 Department of Mathematics, The University of Miami, P.O. Box 249085, Coral Gables, Florida 33124 3 Department of Mathematics, East China Normal University, Shanghai 200062

Received  April 2009 Revised  October 2009 Published  December 2010

Nongeneric bifurcation analysis near rough heterodimensional cycles associated to two saddles in $\mathbb{R}^4$ is presented under inclination flip. By setting up local moving frame systems in some tubular neighborhood of unperturbed heterodimensional cycles, we construct a Poincaré return map under the nongeneric conditions and further obtain the bifurcation equations. Coexistence of a heterodimensional cycle and a unique periodic orbit is proved after perturbations. New features produced by the inclination flip that heterodimensional cycles and homoclinic orbits coexist on the same bifurcation surface are shown. It is also conjectured that homoclinic orbits associated to different equilibria coexist.
Citation: Dan Liu, Shigui Ruan, Deming Zhu. Nongeneric bifurcations near heterodimensional cycles with inclination flip in $\mathbb{R}^4$. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1511-1532. doi: 10.3934/dcdss.2011.4.1511
##### References:
 [1] V. V. Bykov, Orbit structure in a neighborhood of a separatrix cycle containing two saddle-foci, Amer. Math. Soc. Transl., 200 (2000), 87-97. [2] S.-N. Chow and X. Lin, Bifurcation of a homoclinic orbit with a saddle node equilibrium, Differential Integral Equations, 3 (1990), 435-466. [3] B. Deng, Sil'nikov problem, exponential expansion, strong $\lambda$-Lemma, $C^1$-linearization and homoclinic bifurcation, J. Differential Equations, 79 (1989), 189-231. doi: 10.1016/0022-0396(89)90100-9. [4] G. Deng and D. Zhu, A codimension 3 bifurcation of heteroclinic contour involving a hyperbolic and a nonhyperbolic saddle-foci, (Chinese), Chin. Ann. Math. Ser. A, 28 (2007), 667-678. [5] L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations, Nonlinearity, 8 (1995), 693-713. doi: 10.1088/0951-7715/8/5/003. [6] F. Geng, "Bifurcations of Heterodimensional Cycles and Heteroclinic Loop and BVPS of Dynamic Equations on Time Scales," Ph.D thesis, East China Normal University, 2007. [7] P. Hartman, "Ordinary Differential Equations," 2nd edition, Birkhauser, Boston, 1982. [8] Y. Jin and D. Zhu, Bifurcations of rough heteroclinic loops with three saddle points, Acta Math. Sinica Eng. Ser., 18 (2002), 199-208. doi: 10.1007/s101140100139. [9] J. S. W. Lamb, M. A. Teixeira and N. W. Kevin, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $R^3$, J. Differential Equations, 219 (2005), 78-115. doi: 10.1016/j.jde.2005.02.019. [10] D. Liu, F. Geng and D. Zhu, Degenerate bifurcations of nontwisted heterodimensional cycles with codimension 3, Nonlinear Anal., 68 (2008), 2813-2827. doi: 10.1016/j.na.2007.02.028. [11] S. E. Newhouse and J. Palis, Bifurcations of Morse-Smale dynamical systems, in "Dynamical Systems," Academic Press, (1973), 303-366. [12] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2. [13] J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differential Equations, 218 (2005), 390-443. doi: 10.1016/j.jde.2005.03.016. [14] S. Shui and D. Zhu, Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips, Sci. China Ser. A, 48 (2005), 248-260. doi: 10.1360/03ys0201. [15] J. Sun, Bifurcations of heteroclinic loop with nonhyperbolic critical points in $\mathbb{R}^{N}$, Sci. China Ser. A, 24 (1994), 1145-1151. [16] S. Wiggins, "Global Bifurcations and Chaos-Analytical Methods," Springer-Verlag, New York, 1988. [17] P. A. Worfolk, An equivariant, inclination-flip, heteroclinic bifurcation, Nonlinearity, 9 (1996), 631-647. doi: 10.1088/0951-7715/9/3/002. [18] T. Zhang and D. Zhu, Bifurcations of homoclinic orbit connecting two nonleading eigendirections, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 823-836. doi: 10.1142/S0218127407017574. [19] D. Zhu, Problems in homoclinic bifurcation with higher dimensions, Acta Math. Sinica Eng. Ser., 14 (1998), 341-352. doi: 10.1007/BF02580437. [20] D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Sci. China Ser. A, 41 (1998), 837-848. doi: 10.1007/BF02871667.

show all references

##### References:
 [1] V. V. Bykov, Orbit structure in a neighborhood of a separatrix cycle containing two saddle-foci, Amer. Math. Soc. Transl., 200 (2000), 87-97. [2] S.-N. Chow and X. Lin, Bifurcation of a homoclinic orbit with a saddle node equilibrium, Differential Integral Equations, 3 (1990), 435-466. [3] B. Deng, Sil'nikov problem, exponential expansion, strong $\lambda$-Lemma, $C^1$-linearization and homoclinic bifurcation, J. Differential Equations, 79 (1989), 189-231. doi: 10.1016/0022-0396(89)90100-9. [4] G. Deng and D. Zhu, A codimension 3 bifurcation of heteroclinic contour involving a hyperbolic and a nonhyperbolic saddle-foci, (Chinese), Chin. Ann. Math. Ser. A, 28 (2007), 667-678. [5] L. J. Díaz, Persistence of cycles and nonhyperbolic dynamics at heteroclinic bifurcations, Nonlinearity, 8 (1995), 693-713. doi: 10.1088/0951-7715/8/5/003. [6] F. Geng, "Bifurcations of Heterodimensional Cycles and Heteroclinic Loop and BVPS of Dynamic Equations on Time Scales," Ph.D thesis, East China Normal University, 2007. [7] P. Hartman, "Ordinary Differential Equations," 2nd edition, Birkhauser, Boston, 1982. [8] Y. Jin and D. Zhu, Bifurcations of rough heteroclinic loops with three saddle points, Acta Math. Sinica Eng. Ser., 18 (2002), 199-208. doi: 10.1007/s101140100139. [9] J. S. W. Lamb, M. A. Teixeira and N. W. Kevin, Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in $R^3$, J. Differential Equations, 219 (2005), 78-115. doi: 10.1016/j.jde.2005.02.019. [10] D. Liu, F. Geng and D. Zhu, Degenerate bifurcations of nontwisted heterodimensional cycles with codimension 3, Nonlinear Anal., 68 (2008), 2813-2827. doi: 10.1016/j.na.2007.02.028. [11] S. E. Newhouse and J. Palis, Bifurcations of Morse-Smale dynamical systems, in "Dynamical Systems," Academic Press, (1973), 303-366. [12] K. J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equations, 55 (1984), 225-256. doi: 10.1016/0022-0396(84)90082-2. [13] J. D. M. Rademacher, Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit, J. Differential Equations, 218 (2005), 390-443. doi: 10.1016/j.jde.2005.03.016. [14] S. Shui and D. Zhu, Codimension 3 nonresonant bifurcations of homoclinic orbits with two inclination flips, Sci. China Ser. A, 48 (2005), 248-260. doi: 10.1360/03ys0201. [15] J. Sun, Bifurcations of heteroclinic loop with nonhyperbolic critical points in $\mathbb{R}^{N}$, Sci. China Ser. A, 24 (1994), 1145-1151. [16] S. Wiggins, "Global Bifurcations and Chaos-Analytical Methods," Springer-Verlag, New York, 1988. [17] P. A. Worfolk, An equivariant, inclination-flip, heteroclinic bifurcation, Nonlinearity, 9 (1996), 631-647. doi: 10.1088/0951-7715/9/3/002. [18] T. Zhang and D. Zhu, Bifurcations of homoclinic orbit connecting two nonleading eigendirections, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 17 (2007), 823-836. doi: 10.1142/S0218127407017574. [19] D. Zhu, Problems in homoclinic bifurcation with higher dimensions, Acta Math. Sinica Eng. Ser., 14 (1998), 341-352. doi: 10.1007/BF02580437. [20] D. Zhu and Z. Xia, Bifurcations of heteroclinic loops, Sci. China Ser. A, 41 (1998), 837-848. doi: 10.1007/BF02871667.
 [1] Zhiqin Qiao, Deming Zhu, Qiuying Lu. Bifurcation of a heterodimensional cycle with weak inclination flip. Discrete and Continuous Dynamical Systems - B, 2012, 17 (3) : 1009-1025. doi: 10.3934/dcdsb.2012.17.1009 [2] Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 [3] Andy Hammerlindl, Bernd Krauskopf, Gemma Mason, Hinke M. Osinga. Determining the global manifold structure of a continuous-time heterodimensional cycle. Journal of Computational Dynamics, 2022, 9 (3) : 393-419. doi: 10.3934/jcd.2022008 [4] Sebastián Ferrer, Francisco Crespo. Alternative angle-based approach to the $\mathcal{KS}$-Map. An interpretation through symmetry and reduction. Journal of Geometric Mechanics, 2018, 10 (3) : 359-372. doi: 10.3934/jgm.2018013 [5] Andrus Giraldo, Bernd Krauskopf, Hinke M. Osinga. Computing connecting orbits to infinity associated with a homoclinic flip bifurcation. Journal of Computational Dynamics, 2020, 7 (2) : 489-510. doi: 10.3934/jcd.2020020 [6] Thai Son Doan, Martin Rasmussen, Peter E. Kloeden. The mean-square dichotomy spectrum and a bifurcation to a mean-square attractor. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 875-887. doi: 10.3934/dcdsb.2015.20.875 [7] Fang Wu, Lihong Huang, Jiafu Wang. Bifurcation of the critical crossing cycle in a planar piecewise smooth system with two zones. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021264 [8] Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293 [9] Steven M. Pederson. Non-turning Poincaré map and homoclinic tangencies in interval maps with non-constant topological entropy. Conference Publications, 2001, 2001 (Special) : 295-302. doi: 10.3934/proc.2001.2001.295 [10] Ming Zhao, Cuiping Li, Jinliang Wang, Zhaosheng Feng. Bifurcation analysis of the three-dimensional Hénon map. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 625-645. doi: 10.3934/dcdss.2017031 [11] Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846 [12] Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 [13] Mikhail Kamenskii, Boris Mikhaylenko. Bifurcation of periodic solutions from a degenerated cycle in equations of neutral type with a small delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 437-452. doi: 10.3934/dcdsb.2013.18.437 [14] Andrus Giraldo, Neil G. R. Broderick, Bernd Krauskopf. Chaotic switching in driven-dissipative Bose-Hubbard dimers: When a flip bifurcation meets a T-point in $\mathbb{R}^4$. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4023-4075. doi: 10.3934/dcdsb.2021217 [15] Xianjun Wang, Huaguang Gu, Bo Lu. Big homoclinic orbit bifurcation underlying post-inhibitory rebound spike and a novel threshold curve of a neuron. Electronic Research Archive, 2021, 29 (5) : 2987-3015. doi: 10.3934/era.2021023 [16] Brian Ryals, Robert J. Sacker. Bifurcation in the almost periodic $2$D Ricker map. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1263-1284. doi: 10.3934/dcdsb.2021089 [17] Christian Pötzsche. Dichotomy spectra of triangular equations. Discrete and Continuous Dynamical Systems, 2016, 36 (1) : 423-450. doi: 10.3934/dcds.2016.36.423 [18] Shin Kiriki, Yusuke Nishizawa, Teruhiko Soma. Heterodimensional tangencies on cycles leading to strange attractors. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 285-300. doi: 10.3934/dcds.2010.27.285 [19] V. Afraimovich, J. Schmeling, Edgardo Ugalde, Jesús Urías. Spectra of dimensions for Poincaré recurrences. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 901-914. doi: 10.3934/dcds.2000.6.901 [20] Eva Miranda, Romero Solha. A Poincaré lemma in geometric quantisation. Journal of Geometric Mechanics, 2013, 5 (4) : 473-491. doi: 10.3934/jgm.2013.5.473

2021 Impact Factor: 1.865