December  2011, 4(6): 1543-1551. doi: 10.3934/dcdss.2011.4.1543

Conjectures for the existence of an idempotent in $\omega $-polynomial algebras

1. 

Département de Mathématiques et Informatique Appliquées, Université Paul Valéry, Montpellier III, 34199 Montpellier, France, France

Received  March 2009 Revised  October 2009 Published  December 2010

The existence of idempotent elements in baric algebras defined by $\omega$-polynomial identities ($\omega$-PI algebras) is an important problem for the study of genetic algebras. We conjecture here two criteria on the existence of an idempotent. These criteria are based on the existence of 1/2 as double root of a polynomial built from the identity defining a $\omega$-PI algebra. We show that these criteria are true in all the algebras studied until now and for which we have results concerning the existence of idempotent elements.
Citation: Michelle Nourigat, Richard Varro. Conjectures for the existence of an idempotent in $\omega $-polynomial algebras. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1543-1551. doi: 10.3934/dcdss.2011.4.1543
References:
[1]

V. M. Abraham, Linearizing quadratic transformations in genetic algebras,, Proc. London Math. Soc., 40 (1980), 346. doi: 10.1112/plms/s3-40.2.346. Google Scholar

[2]

I. M. H. Etherington, Commutative train algebras of ranks 2 and 3,, J. London Math. Soc., 15 (1940), 136. Google Scholar

[3]

J. C. Gutiérrez Fernández, Principal and plenary train algebras,, Comm. Algebra, 28 (2000), 653. doi: 10.1080/00927870008826850. Google Scholar

[4]

A. Labra and A. Suazo, On plenary algebras of rank 4,, Comm. Algebra, 35 (2007), 2744. doi: 10.1080/00927870701353589. Google Scholar

[5]

J. López-Sánchez and E. Rodríguez Santa Maria, On train algebras of rank 4,, Comm. Algebra, 24 (1996), 439. Google Scholar

[6]

C. Mallol and A. Suazo, Une classe d'algèbres pondérées de degré 4, (French) [A class of weighted algebras of degree 4],, Comm. Algebra, 28 (2000), 2191. doi: 10.1080/00927870008826952. Google Scholar

[7]

C. Mallol and R. Varro, Les algèbres de mutation, (French) [Mutation algebras],, Non-associative algebra and its applications (Oviedo, (1993), 245. Google Scholar

[8]

C. Mallol and R. Varro, Algèbres de Mutation et Train algèbres, (French) [Mutation algebras and train algebras], East-West J. Math., 4 (2002), 77. Google Scholar

[9]

C. Mallol and R. Varro, Sur la Gamétisation et le Rétrocroisement, (French) [Gametization and backcrossing],, Algebras Groups Geom., 22 (2005), 49. Google Scholar

[10]

M. Nourigat, "Étude des $\omega $-PI Algèbres de Degré 4,", PhD Thesis, (2008). Google Scholar

[11]

R. Varro, Introduction aux algèbres de Bernstein périodiques (cas Moufang, idempotents, caractéristique 2), (French) [Introduction to periodic Bernstein algebras (Moufang case, idempotents, characteristic 2)],, Non-associative algebra and its applications (Oviedo, 303 (1993), 384. Google Scholar

[12]

S. Walcher, Algebras which satisfy a train equation for the first three plenary powers,, Arch. Math. (Basel), 56 (1991), 547. Google Scholar

[13]

A. Wörz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomathematics, (1980). Google Scholar

[14]

K. A. Zhevlakov, A. M. Slin'ko and I. P. Shestakov, "Rings that are Nearly Associative,", Pure and Applied Mathematics, 104 (). Google Scholar

show all references

References:
[1]

V. M. Abraham, Linearizing quadratic transformations in genetic algebras,, Proc. London Math. Soc., 40 (1980), 346. doi: 10.1112/plms/s3-40.2.346. Google Scholar

[2]

I. M. H. Etherington, Commutative train algebras of ranks 2 and 3,, J. London Math. Soc., 15 (1940), 136. Google Scholar

[3]

J. C. Gutiérrez Fernández, Principal and plenary train algebras,, Comm. Algebra, 28 (2000), 653. doi: 10.1080/00927870008826850. Google Scholar

[4]

A. Labra and A. Suazo, On plenary algebras of rank 4,, Comm. Algebra, 35 (2007), 2744. doi: 10.1080/00927870701353589. Google Scholar

[5]

J. López-Sánchez and E. Rodríguez Santa Maria, On train algebras of rank 4,, Comm. Algebra, 24 (1996), 439. Google Scholar

[6]

C. Mallol and A. Suazo, Une classe d'algèbres pondérées de degré 4, (French) [A class of weighted algebras of degree 4],, Comm. Algebra, 28 (2000), 2191. doi: 10.1080/00927870008826952. Google Scholar

[7]

C. Mallol and R. Varro, Les algèbres de mutation, (French) [Mutation algebras],, Non-associative algebra and its applications (Oviedo, (1993), 245. Google Scholar

[8]

C. Mallol and R. Varro, Algèbres de Mutation et Train algèbres, (French) [Mutation algebras and train algebras], East-West J. Math., 4 (2002), 77. Google Scholar

[9]

C. Mallol and R. Varro, Sur la Gamétisation et le Rétrocroisement, (French) [Gametization and backcrossing],, Algebras Groups Geom., 22 (2005), 49. Google Scholar

[10]

M. Nourigat, "Étude des $\omega $-PI Algèbres de Degré 4,", PhD Thesis, (2008). Google Scholar

[11]

R. Varro, Introduction aux algèbres de Bernstein périodiques (cas Moufang, idempotents, caractéristique 2), (French) [Introduction to periodic Bernstein algebras (Moufang case, idempotents, characteristic 2)],, Non-associative algebra and its applications (Oviedo, 303 (1993), 384. Google Scholar

[12]

S. Walcher, Algebras which satisfy a train equation for the first three plenary powers,, Arch. Math. (Basel), 56 (1991), 547. Google Scholar

[13]

A. Wörz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomathematics, (1980). Google Scholar

[14]

K. A. Zhevlakov, A. M. Slin'ko and I. P. Shestakov, "Rings that are Nearly Associative,", Pure and Applied Mathematics, 104 (). Google Scholar

[1]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-15. doi: 10.3934/dcdss.2020066

[2]

Hari Bercovici, Viorel Niţică. A Banach algebra version of the Livsic theorem. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 523-534. doi: 10.3934/dcds.1998.4.523

[3]

Heinz-Jürgen Flad, Gohar Harutyunyan. Ellipticity of quantum mechanical Hamiltonians in the edge algebra. Conference Publications, 2011, 2011 (Special) : 420-429. doi: 10.3934/proc.2011.2011.420

[4]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[5]

Viktor Levandovskyy, Gerhard Pfister, Valery G. Romanovski. Evaluating cyclicity of cubic systems with algorithms of computational algebra. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2023-2035. doi: 10.3934/cpaa.2012.11.2023

[6]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[7]

José Gómez-Torrecillas, F. J. Lobillo, Gabriel Navarro. Convolutional codes with a matrix-algebra word-ambient. Advances in Mathematics of Communications, 2016, 10 (1) : 29-43. doi: 10.3934/amc.2016.10.29

[8]

H. Bercovici, V. Niţică. Cohomology of higher rank abelian Anosov actions for Banach algebra valued cocycles. Conference Publications, 2001, 2001 (Special) : 50-55. doi: 10.3934/proc.2001.2001.50

[9]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[10]

A. S. Dzhumadil'daev. Jordan elements and Left-Center of a Free Leibniz algebra. Electronic Research Announcements, 2011, 18: 31-49. doi: 10.3934/era.2011.18.31

[11]

Navin Keswani. Homotopy invariance of relative eta-invariants and $C^*$-algebra $K$-theory. Electronic Research Announcements, 1998, 4: 18-26.

[12]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[13]

Jun Xie, Jinlong Yuan, Dongxia Wang, Weili Liu, Chongyang Liu. Uniqueness of solutions to fuzzy relational equations regarding Max-av composition and strong regularity of the matrices in Max-av algebra. Journal of Industrial & Management Optimization, 2018, 14 (3) : 1007-1022. doi: 10.3934/jimo.2017087

[14]

Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217

[15]

Joseph Bayara, André Conseibo, Moussa Ouattara, Artibano Micali. Train algebras of degree 2 and exponent 3. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1371-1386. doi: 10.3934/dcdss.2011.4.1371

[16]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[17]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[18]

Hiroyuki Torikai. Basic spike-train properties of a digital spiking neuron. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 183-198. doi: 10.3934/dcdsb.2008.9.183

[19]

S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541

[20]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. A leaky integrate-and-fire model with adaptation for the generation of a spike train. Mathematical Biosciences & Engineering, 2016, 13 (3) : 483-493. doi: 10.3934/mbe.2016002

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]