December  2011, 4(6): 1553-1564. doi: 10.3934/dcdss.2011.4.1553

Backward problems of nonlinear dynamical equations on time scales

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China

2. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025

3. 

Department of Mathematics, Guizou University, Guiyang, Guizhou Province

Received  February 2009 Revised  November 2009 Published  December 2010

In this paper, the backward problem of nonlinear dynamical equations on time scales is considered. Introducing the reasonable weak solution of the nonlinear backward problem, the existence of weak solution for nonlinear dynamical equation on time scales and its properties are presented.
Citation: Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553
References:
[1]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusions," Hindawi Publishing Corporation, New York, 2006. doi: 10.1155/9789775945501.

[2]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales," Birkhäuser, Boston, 2003.

[3]

Yurong Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales, Journal of Industrial and Management Optimization, 5 (2009), 1-13. doi: 10.3934/jimo.2009.5.1.

[4]

G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285 (2003), 107-127. doi: 10.1016/S0022-247X(03)00361-5.

[5]

V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, "Dynamical Systems on Measure Chains," Kluwer Acadamic, Dordrecht, 1996.

[6]

V. Lakshmikantham and S. Sivasundaram, Stability of moving invariant sets and uncertain dynamic systems on time scales, Computers and Mathematics with Applications, 36 (1998), 339-346. doi: 10.1016/S0898-1221(98)80034-5.

[7]

H. Liu, X. Xiang and W. Wei, Existence and uniqueness of solutions for a class of the first order impulsive dynamic equations on time scales, DCDIS Proceeding, 3 (2005), 114-121.

[8]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales, Nonlinear Analysis, 69 (2008), 2803-2811. doi: 10.1016/j.na.2007.08.052.

[9]

Bryan P. Rynne, $L^2$ spaces and boundary value problems on time-scales, J. Mathe. Anal. Appl., 328 (2007), 1217-1236. doi: 10.1016/j.jmaa.2006.06.008.

[10]

Christopher C. Tisdell and Atiya Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling, Nonlinear Analsis, 68 (2008), 3504-3524. doi: 10.1016/j.na.2007.03.043.

[11]

Da-Bin Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales, Computers and Mathematics with Applications, 56 (2008), 1496-1504. doi: 10.1016/j.camwa.2008.02.038.

show all references

References:
[1]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusions," Hindawi Publishing Corporation, New York, 2006. doi: 10.1155/9789775945501.

[2]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales," Birkhäuser, Boston, 2003.

[3]

Yurong Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales, Journal of Industrial and Management Optimization, 5 (2009), 1-13. doi: 10.3934/jimo.2009.5.1.

[4]

G. S. Guseinov, Integration on time scales, J. Math. Anal. Appl., 285 (2003), 107-127. doi: 10.1016/S0022-247X(03)00361-5.

[5]

V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, "Dynamical Systems on Measure Chains," Kluwer Acadamic, Dordrecht, 1996.

[6]

V. Lakshmikantham and S. Sivasundaram, Stability of moving invariant sets and uncertain dynamic systems on time scales, Computers and Mathematics with Applications, 36 (1998), 339-346. doi: 10.1016/S0898-1221(98)80034-5.

[7]

H. Liu, X. Xiang and W. Wei, Existence and uniqueness of solutions for a class of the first order impulsive dynamic equations on time scales, DCDIS Proceeding, 3 (2005), 114-121.

[8]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales, Nonlinear Analysis, 69 (2008), 2803-2811. doi: 10.1016/j.na.2007.08.052.

[9]

Bryan P. Rynne, $L^2$ spaces and boundary value problems on time-scales, J. Mathe. Anal. Appl., 328 (2007), 1217-1236. doi: 10.1016/j.jmaa.2006.06.008.

[10]

Christopher C. Tisdell and Atiya Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling, Nonlinear Analsis, 68 (2008), 3504-3524. doi: 10.1016/j.na.2007.03.043.

[11]

Da-Bin Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales, Computers and Mathematics with Applications, 56 (2008), 1496-1504. doi: 10.1016/j.camwa.2008.02.038.

[1]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control and Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[2]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[3]

M. Carme Leseduarte, Ramon Quintanilla. On the backward in time problem for the thermoelasticity with two temperatures. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 679-695. doi: 10.3934/dcdsb.2014.19.679

[4]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[5]

Cong Qin, Xinfu Chen. A new weak solution to an optimal stopping problem. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4823-4837. doi: 10.3934/dcdsb.2020128

[6]

Saroj Panigrahi. Liapunov-type integral inequalities for higher order dynamic equations on time scales. Conference Publications, 2013, 2013 (special) : 629-641. doi: 10.3934/proc.2013.2013.629

[7]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[8]

Yushi Hamaguchi. Extended backward stochastic Volterra integral equations and their applications to time-Inconsistent stochastic recursive control problems. Mathematical Control and Related Fields, 2021, 11 (2) : 433-478. doi: 10.3934/mcrf.2020043

[9]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems and Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[10]

Bin Fan, Mejdi Azaïez, Chuanju Xu. An extension of the landweber regularization for a backward time fractional wave problem. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2893-2916. doi: 10.3934/dcdss.2020409

[11]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[12]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete and Continuous Dynamical Systems, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[13]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[14]

Haiyang Wang, Jianfeng Zhang. Forward backward SDEs in weak formulation. Mathematical Control and Related Fields, 2018, 8 (3&4) : 1021-1049. doi: 10.3934/mcrf.2018044

[15]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[16]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete and Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[17]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems and Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[18]

Markus Hegland, Bernd Hofmann. Errors of regularisation under range inclusions using variable Hilbert scales. Inverse Problems and Imaging, 2011, 5 (3) : 619-643. doi: 10.3934/ipi.2011.5.619

[19]

Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293-309. doi: 10.3934/dcds.2018014

[20]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations and Control Theory, 2020, 9 (2) : 561-579. doi: 10.3934/eect.2020024

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (83)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]