December  2011, 4(6): 1553-1564. doi: 10.3934/dcdss.2011.4.1553

Backward problems of nonlinear dynamical equations on time scales

1. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou 550025, China

2. 

Department of Mathematics, Guizhou University, Guiyang, Guizhou, 550025

3. 

Department of Mathematics, Guizou University, Guiyang, Guizhou Province

Received  February 2009 Revised  November 2009 Published  December 2010

In this paper, the backward problem of nonlinear dynamical equations on time scales is considered. Introducing the reasonable weak solution of the nonlinear backward problem, the existence of weak solution for nonlinear dynamical equation on time scales and its properties are presented.
Citation: Yunfei Peng, X. Xiang, W. Wei. Backward problems of nonlinear dynamical equations on time scales. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1553-1564. doi: 10.3934/dcdss.2011.4.1553
References:
[1]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusions,", Hindawi Publishing Corporation, (2006).  doi: 10.1155/9789775945501.  Google Scholar

[2]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales,", Birkhäuser, (2003).   Google Scholar

[3]

Yurong Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, Journal of Industrial and Management Optimization, 5 (2009), 1.  doi: 10.3934/jimo.2009.5.1.  Google Scholar

[4]

G. S. Guseinov, Integration on time scales,, J. Math. Anal. Appl., 285 (2003), 107.  doi: 10.1016/S0022-247X(03)00361-5.  Google Scholar

[5]

V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, "Dynamical Systems on Measure Chains,", Kluwer Acadamic, (1996).   Google Scholar

[6]

V. Lakshmikantham and S. Sivasundaram, Stability of moving invariant sets and uncertain dynamic systems on time scales,, Computers and Mathematics with Applications, 36 (1998), 339.  doi: 10.1016/S0898-1221(98)80034-5.  Google Scholar

[7]

H. Liu, X. Xiang and W. Wei, Existence and uniqueness of solutions for a class of the first order impulsive dynamic equations on time scales,, DCDIS Proceeding, 3 (2005), 114.   Google Scholar

[8]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803.  doi: 10.1016/j.na.2007.08.052.  Google Scholar

[9]

Bryan P. Rynne, $L^2$ spaces and boundary value problems on time-scales,, J. Mathe. Anal. Appl., 328 (2007), 1217.  doi: 10.1016/j.jmaa.2006.06.008.  Google Scholar

[10]

Christopher C. Tisdell and Atiya Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling,, Nonlinear Analsis, 68 (2008), 3504.  doi: 10.1016/j.na.2007.03.043.  Google Scholar

[11]

Da-Bin Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales,, Computers and Mathematics with Applications, 56 (2008), 1496.  doi: 10.1016/j.camwa.2008.02.038.  Google Scholar

show all references

References:
[1]

M. Benchohra, J. Henderson and S. Ntouyas, "Impulsive Differential Equations and Inclusions,", Hindawi Publishing Corporation, (2006).  doi: 10.1155/9789775945501.  Google Scholar

[2]

M. Bohner and A. Peterson, "Advances in Dynamic Equations on Time Scales,", Birkhäuser, (2003).   Google Scholar

[3]

Yurong Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales,, Journal of Industrial and Management Optimization, 5 (2009), 1.  doi: 10.3934/jimo.2009.5.1.  Google Scholar

[4]

G. S. Guseinov, Integration on time scales,, J. Math. Anal. Appl., 285 (2003), 107.  doi: 10.1016/S0022-247X(03)00361-5.  Google Scholar

[5]

V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, "Dynamical Systems on Measure Chains,", Kluwer Acadamic, (1996).   Google Scholar

[6]

V. Lakshmikantham and S. Sivasundaram, Stability of moving invariant sets and uncertain dynamic systems on time scales,, Computers and Mathematics with Applications, 36 (1998), 339.  doi: 10.1016/S0898-1221(98)80034-5.  Google Scholar

[7]

H. Liu, X. Xiang and W. Wei, Existence and uniqueness of solutions for a class of the first order impulsive dynamic equations on time scales,, DCDIS Proceeding, 3 (2005), 114.   Google Scholar

[8]

H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales,, Nonlinear Analysis, 69 (2008), 2803.  doi: 10.1016/j.na.2007.08.052.  Google Scholar

[9]

Bryan P. Rynne, $L^2$ spaces and boundary value problems on time-scales,, J. Mathe. Anal. Appl., 328 (2007), 1217.  doi: 10.1016/j.jmaa.2006.06.008.  Google Scholar

[10]

Christopher C. Tisdell and Atiya Zaidi, Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modelling,, Nonlinear Analsis, 68 (2008), 3504.  doi: 10.1016/j.na.2007.03.043.  Google Scholar

[11]

Da-Bin Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales,, Computers and Mathematics with Applications, 56 (2008), 1496.  doi: 10.1016/j.camwa.2008.02.038.  Google Scholar

[1]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[2]

Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323

[3]

M. Carme Leseduarte, Ramon Quintanilla. On the backward in time problem for the thermoelasticity with two temperatures. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 679-695. doi: 10.3934/dcdsb.2014.19.679

[4]

Qilin Wang, Shengji Li. Lower semicontinuity of the solution mapping to a parametric generalized vector equilibrium problem. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1225-1234. doi: 10.3934/jimo.2014.10.1225

[5]

Saroj Panigrahi. Liapunov-type integral inequalities for higher order dynamic equations on time scales. Conference Publications, 2013, 2013 (special) : 629-641. doi: 10.3934/proc.2013.2013.629

[6]

Yongkun Li, Pan Wang. Almost periodic solution for neutral functional dynamic equations with Stepanov-almost periodic terms on time scales. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 463-473. doi: 10.3934/dcdss.2017022

[7]

Junxiong Jia, Jigen Peng, Jinghuai Gao, Yujiao Li. Backward problem for a time-space fractional diffusion equation. Inverse Problems & Imaging, 2018, 12 (3) : 773-799. doi: 10.3934/ipi.2018033

[8]

Toyohiko Aiki, Adrian Muntean. On uniqueness of a weak solution of one-dimensional concrete carbonation problem. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1345-1365. doi: 10.3934/dcds.2011.29.1345

[9]

Zhong Tan, Jianfeng Zhou. Higher integrability of weak solution of a nonlinear problem arising in the electrorheological fluids. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1335-1350. doi: 10.3934/cpaa.2016.15.1335

[10]

Qilong Zhai, Ran Zhang. Lower and upper bounds of Laplacian eigenvalue problem by weak Galerkin method on triangular meshes. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 403-413. doi: 10.3934/dcdsb.2018091

[11]

Haiyang Wang, Jianfeng Zhang. Forward backward SDEs in weak formulation. Mathematical Control & Related Fields, 2018, 8 (3&4) : 1021-1049. doi: 10.3934/mcrf.2018044

[12]

Hassan Emamirad, Philippe Rogeon. Semiclassical limit of Husimi function. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 669-676. doi: 10.3934/dcdss.2013.6.669

[13]

Małgorzata Wyrwas, Dorota Mozyrska, Ewa Girejko. Subdifferentials of convex functions on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 671-691. doi: 10.3934/dcds.2011.29.671

[14]

Roman Chapko, B. Tomas Johansson. On the numerical solution of a Cauchy problem for the Laplace equation via a direct integral equation approach. Inverse Problems & Imaging, 2012, 6 (1) : 25-38. doi: 10.3934/ipi.2012.6.25

[15]

Markus Hegland, Bernd Hofmann. Errors of regularisation under range inclusions using variable Hilbert scales. Inverse Problems & Imaging, 2011, 5 (3) : 619-643. doi: 10.3934/ipi.2011.5.619

[16]

Nguyen Huy Tuan, Tran Ngoc Thach, Yong Zhou. On a backward problem for two-dimensional time fractional wave equation with discrete random data. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020024

[17]

Na An, Chaobao Huang, Xijun Yu. Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 321-334. doi: 10.3934/dcdsb.2019185

[18]

Peter A. Hästö. On the existance of minimizers of the variable exponent Dirichlet energy integral. Communications on Pure & Applied Analysis, 2006, 5 (3) : 415-422. doi: 10.3934/cpaa.2006.5.415

[19]

María Teresa Cao-Rial, Peregrina Quintela, Carlos Moreno. Numerical solution of a time-dependent Signorini contact problem. Conference Publications, 2007, 2007 (Special) : 201-211. doi: 10.3934/proc.2007.2007.201

[20]

Jing Li, Boling Guo, Lan Zeng, Yitong Pei. Global weak solution and smooth solution of the periodic initial value problem for the generalized Landau-Lifshitz-Bloch equation in high dimensions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019230

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]