December  2011, 4(6): 1565-1575. doi: 10.3934/dcdss.2011.4.1565

Topology and dynamics of boolean networks with strong inhibition

1. 

Department of Mathematics, The George Washington University, Washington, DC 20052, United States, United States

2. 

Department of Physics, The George Washington University, Washington, DC 20052, United States, United States, United States

Received  May 2009 Revised  October 2009 Published  December 2010

A major challenge in systems biology is to understand interactions within biological systems. Such a system often consists of units with various levels of activities that evolve over time, mathematically represented by the dynamics of the system. The interaction between units is mathematically represented by the topology of the system. We carry out some mathematical analysis on the connections between topology and dynamics of such networks. We focus on a specific Boolean network model - the Strong Inhibition Model. This model defines a natural map from the space of all possible topologies on the network to the space of all possible dynamics on the same network. We prove this map is neither surjective nor injective. We introduce the notions of "redundant edges" and "dormant vertices" which capture the non-injectiveness of the map. Using these, we determine exactly when two different topologies yield the same dynamics and we provide an algorithm that determines all possible network solutions given a dynamics.
Citation: Yongwu Rong, Chen Zeng, Christina Evans, Hao Chen, Guanyu Wang. Topology and dynamics of boolean networks with strong inhibition. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1565-1575. doi: 10.3934/dcdss.2011.4.1565
References:
[1]

F. Li, T. Long, Y. Lu, Q. Ouyang and C. Tang, The yeast cell-cycle network is robustly designed,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 4781.  doi: 10.1073/pnas.0305937101.  Google Scholar

[2]

N. Tan and Q. Ouyang, Design of a network with state stability,, J. Theor. Biol., 240 (2006), 592.  doi: 10.1016/j.jtbi.2005.10.019.  Google Scholar

[3]

J. Hopfield, Neural networks and physical systems with emergent collective computational properties,, Proc. National Academy of Sciences of the USA, 79 (1982), 2554.  doi: 10.1073/pnas.79.8.2554.  Google Scholar

[4]

G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-Based Network Decomposition Reveals Backbone Motif Structure,, Proc. National Academy of Sciences, 107 (2010), 10478.  doi: 10.1073/pnas.0914180107.  Google Scholar

[5]

R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse engineering of gene regulatory networks,, Journal of Theoretical Biology, 229 (2004), 523.  doi: 10.1016/j.jtbi.2004.04.037.  Google Scholar

[6]

A. Salam Jarrah, R. Laubenbacher and A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean networks,, preprint (2008). \arXiv{0805.0275}., (2008).   Google Scholar

show all references

References:
[1]

F. Li, T. Long, Y. Lu, Q. Ouyang and C. Tang, The yeast cell-cycle network is robustly designed,, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 4781.  doi: 10.1073/pnas.0305937101.  Google Scholar

[2]

N. Tan and Q. Ouyang, Design of a network with state stability,, J. Theor. Biol., 240 (2006), 592.  doi: 10.1016/j.jtbi.2005.10.019.  Google Scholar

[3]

J. Hopfield, Neural networks and physical systems with emergent collective computational properties,, Proc. National Academy of Sciences of the USA, 79 (1982), 2554.  doi: 10.1073/pnas.79.8.2554.  Google Scholar

[4]

G. Wang, C. Du, H. Chen, R. Simha, Y. Rong, Y. Xiao, and C. Zeng, Process-Based Network Decomposition Reveals Backbone Motif Structure,, Proc. National Academy of Sciences, 107 (2010), 10478.  doi: 10.1073/pnas.0914180107.  Google Scholar

[5]

R. Laubenbacher and B. Stigler, A computational algebra approach to the reverse engineering of gene regulatory networks,, Journal of Theoretical Biology, 229 (2004), 523.  doi: 10.1016/j.jtbi.2004.04.037.  Google Scholar

[6]

A. Salam Jarrah, R. Laubenbacher and A. Veliz-Cuba, The dynamics of conjunctive and disjunctive Boolean networks,, preprint (2008). \arXiv{0805.0275}., (2008).   Google Scholar

[1]

Radosław Kurek, Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. Ⅲ. Splitting of separatrices and chaos. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1955-1981. doi: 10.3934/dcds.2018079

[2]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations & Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83

[3]

Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations & Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59

[4]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[5]

Kangkang Deng, Zheng Peng, Jianli Chen. Sparse probabilistic Boolean network problems: A partial proximal-type operator splitting method. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1881-1896. doi: 10.3934/jimo.2018127

[6]

P.K. Newton. The dipole dynamical system. Conference Publications, 2005, 2005 (Special) : 692-699. doi: 10.3934/proc.2005.2005.692

[7]

Rumi Ghosh, Kristina Lerman. Rethinking centrality: The role of dynamical processes in social network analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1355-1372. doi: 10.3934/dcdsb.2014.19.1355

[8]

K. L. Mak, J. G. Peng, Z. B. Xu, K. F. C. Yiu. A novel neural network for associative memory via dynamical systems. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 573-590. doi: 10.3934/dcdsb.2006.6.573

[9]

Tibye Saumtally, Jean-Patrick Lebacque, Habib Haj-Salem. A dynamical two-dimensional traffic model in an anisotropic network. Networks & Heterogeneous Media, 2013, 8 (3) : 663-684. doi: 10.3934/nhm.2013.8.663

[10]

Liu Hui, Lin Zhi, Waqas Ahmad. Network(graph) data research in the coordinate system. Mathematical Foundations of Computing, 2018, 1 (1) : 1-10. doi: 10.3934/mfc.2018001

[11]

Dorota Bors, Robert Stańczy. Dynamical system modeling fermionic limit. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 45-55. doi: 10.3934/dcdsb.2018004

[12]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[13]

Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Dynamical behaviour of a large complex system. Communications on Pure & Applied Analysis, 2008, 7 (2) : 249-265. doi: 10.3934/cpaa.2008.7.249

[14]

Yi Ming Zou. Dynamics of boolean networks. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1629-1640. doi: 10.3934/dcdss.2011.4.1629

[15]

Constanza Riera, Pantelimon Stănică. Landscape Boolean functions. Advances in Mathematics of Communications, 2019, 13 (4) : 613-627. doi: 10.3934/amc.2019038

[16]

Sanjay K. Mazumdar, Cheng-Chew Lim. A neural network based anti-skid brake system. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 321-338. doi: 10.3934/dcds.1999.5.321

[17]

Dequan Yue, Wuyi Yue. A heterogeneous two-server network system with balking and a Bernoulli vacation schedule. Journal of Industrial & Management Optimization, 2010, 6 (3) : 501-516. doi: 10.3934/jimo.2010.6.501

[18]

Mika Yoshida, Kinji Fuchikami, Tatsuya Uezu. Realization of immune response features by dynamical system models. Mathematical Biosciences & Engineering, 2007, 4 (3) : 531-552. doi: 10.3934/mbe.2007.4.531

[19]

Howard A. Levine, Yeon-Jung Seo, Marit Nilsen-Hamilton. A discrete dynamical system arising in molecular biology. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 2091-2151. doi: 10.3934/dcdsb.2012.17.2091

[20]

Karsten Keller, Sergiy Maksymenko, Inga Stolz. Entropy determination based on the ordinal structure of a dynamical system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3507-3524. doi: 10.3934/dcdsb.2015.20.3507

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]