December  2011, 4(6): 1577-1586. doi: 10.3934/dcdss.2011.4.1577

Algebraic model of non-Mendelian inheritance

1. 

Mathematics Department, College of William and Mary, Williamsburg, VA 23187, United States

Received  April 2009 Revised  October 2009 Published  December 2010

Evolution algebra theory is used to study non-Mendelian inheritance, particularly organelle heredity and population genetics of Phytophthora infectans. We not only can explain a puzzling feature of establishment of homoplasmy from heteroplasmic cell population and the coexistence of mitochondrial triplasmy, but also can predict all mechanisms to form the homoplasmy of cell populations, which are hypothetical mechanisms in current mitochondrial disease research. The algebras also provide a way to easily find different genetically dynamic patterns from the complexity of the progenies of Phytophthora infectans which cause the late blight of potatoes and tomatoes. Certain suggestions to pathologists are made as well.
Citation: Jianjun Paul Tian. Algebraic model of non-Mendelian inheritance. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1577-1586. doi: 10.3934/dcdss.2011.4.1577
References:
[1]

C. W. Jr. Birky, The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models,, Annu. Rev. Genet., 35 (2001), 125. doi: 10.1146/annurev.genet.35.102401.090231. Google Scholar

[2]

C. W. Jr. Birky, "Inheritance of Mitochondrial Mutations,", Mitochondrial DNA Mutations and Aging, (1998). Google Scholar

[3]

Jianjun Paul Tian, "Evolution Algebras and their Applications,", Lecture Note in Mathematics, 1921 (2008). Google Scholar

[4]

G. Mendel, "Experiments in Plant-Hybridization,", Classic Papers in Genetics, (1959), 1. Google Scholar

[5]

Y. I. Lyubich, "Mathematical Structures in Population Genetics,", Springer-Verlag, (1992). Google Scholar

[6]

A. Worz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomath. 36, (1980). Google Scholar

[7]

M. L. Reed, Algebraic structure of genetic inheritance,, Bull. of AMS, 34 (1997), 107. doi: 10.1090/S0273-0979-97-00712-X. Google Scholar

[8]

N. W. Gillham, "Organelle Genes and Genomes,", Oxford University Press, (1994). Google Scholar

[9]

C. F. Emmerson, G. K. Brown and J. Poulton, Synthesis of mitochondrial DNA in permeabilised human cultured cells,, Nucleic Acids Res., 29 (2001). Google Scholar

[10]

F. Ling and T. Shibata, Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells,, Mol. Biol. Cell, 15 (2004), 310. doi: 10.1091/mbc.E03-07-0508. Google Scholar

[11]

Y. Tang, G. Manfredi, M. Hirano and E. A. Schon, Maintenance of human rearranged mitochondrial DNAs in long-term transmitochondrial cell lines,, Mol. Biol. Cell, 11 (2000), 2349. Google Scholar

[12]

F. M. A. Samen, G. A. Secor and N. C. Gudmestad, Variability in virulence among asexual progenies of Phytophthora infestans,, Phytopathology, 93 (2003), 293. doi: 10.1094/PHYTO.2003.93.3.293. Google Scholar

[13]

W. E. Fry, and S. B. Goodwin, Re-emergence of potato and tomato late blight in the United States,, Plant Disease, 81 (1997), 1349. doi: 10.1094/PDIS.1997.81.12.1349. Google Scholar

show all references

References:
[1]

C. W. Jr. Birky, The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models,, Annu. Rev. Genet., 35 (2001), 125. doi: 10.1146/annurev.genet.35.102401.090231. Google Scholar

[2]

C. W. Jr. Birky, "Inheritance of Mitochondrial Mutations,", Mitochondrial DNA Mutations and Aging, (1998). Google Scholar

[3]

Jianjun Paul Tian, "Evolution Algebras and their Applications,", Lecture Note in Mathematics, 1921 (2008). Google Scholar

[4]

G. Mendel, "Experiments in Plant-Hybridization,", Classic Papers in Genetics, (1959), 1. Google Scholar

[5]

Y. I. Lyubich, "Mathematical Structures in Population Genetics,", Springer-Verlag, (1992). Google Scholar

[6]

A. Worz-Busekros, "Algebras in Genetics,", Lecture Notes in Biomath. 36, (1980). Google Scholar

[7]

M. L. Reed, Algebraic structure of genetic inheritance,, Bull. of AMS, 34 (1997), 107. doi: 10.1090/S0273-0979-97-00712-X. Google Scholar

[8]

N. W. Gillham, "Organelle Genes and Genomes,", Oxford University Press, (1994). Google Scholar

[9]

C. F. Emmerson, G. K. Brown and J. Poulton, Synthesis of mitochondrial DNA in permeabilised human cultured cells,, Nucleic Acids Res., 29 (2001). Google Scholar

[10]

F. Ling and T. Shibata, Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells,, Mol. Biol. Cell, 15 (2004), 310. doi: 10.1091/mbc.E03-07-0508. Google Scholar

[11]

Y. Tang, G. Manfredi, M. Hirano and E. A. Schon, Maintenance of human rearranged mitochondrial DNAs in long-term transmitochondrial cell lines,, Mol. Biol. Cell, 11 (2000), 2349. Google Scholar

[12]

F. M. A. Samen, G. A. Secor and N. C. Gudmestad, Variability in virulence among asexual progenies of Phytophthora infestans,, Phytopathology, 93 (2003), 293. doi: 10.1094/PHYTO.2003.93.3.293. Google Scholar

[13]

W. E. Fry, and S. B. Goodwin, Re-emergence of potato and tomato late blight in the United States,, Plant Disease, 81 (1997), 1349. doi: 10.1094/PDIS.1997.81.12.1349. Google Scholar

[1]

Jianjun Tian, Bai-Lian Li. Coalgebraic Structure of Genetic Inheritance. Mathematical Biosciences & Engineering, 2004, 1 (2) : 243-266. doi: 10.3934/mbe.2004.1.243

[2]

Grégory Berhuy. Algebraic space-time codes based on division algebras with a unitary involution. Advances in Mathematics of Communications, 2014, 8 (2) : 167-189. doi: 10.3934/amc.2014.8.167

[3]

Jesse Berwald, Marian Gidea. Critical transitions in a model of a genetic regulatory system. Mathematical Biosciences & Engineering, 2014, 11 (4) : 723-740. doi: 10.3934/mbe.2014.11.723

[4]

Feng Rong. Non-algebraic attractors on $\mathbf{P}^k$. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 977-989. doi: 10.3934/dcds.2012.32.977

[5]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[6]

Antonio Algaba, Natalia Fuentes, Cristóbal García, Manuel Reyes. Non-formally integrable centers admitting an algebraic inverse integrating factor. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 967-988. doi: 10.3934/dcds.2018041

[7]

Pieter C. Allaart. An algebraic approach to entropy plateaus in non-integer base expansions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6507-6522. doi: 10.3934/dcds.2019282

[8]

Ping-Chen Lin. Portfolio optimization and risk measurement based on non-dominated sorting genetic algorithm. Journal of Industrial & Management Optimization, 2012, 8 (3) : 549-564. doi: 10.3934/jimo.2012.8.549

[9]

Jiao-Yan Li, Xiao Hu, Zhong Wan. An integrated bi-objective optimization model and improved genetic algorithm for vehicle routing problems with temporal and spatial constraints. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2018200

[10]

Boris Khots, Dmitriy Khots. P-groups applications in genetics. Conference Publications, 2001, 2001 (Special) : 224-228. doi: 10.3934/proc.2001.2001.224

[11]

Zhilan Feng, Carlos Castillo-Chavez. The influence of infectious diseases on population genetics. Mathematical Biosciences & Engineering, 2006, 3 (3) : 467-483. doi: 10.3934/mbe.2006.3.467

[12]

Daniele Bartoli, Leo Storme. On the functional codes arising from the intersections of algebraic hypersurfaces of small degree with a non-singular quadric. Advances in Mathematics of Communications, 2014, 8 (3) : 271-280. doi: 10.3934/amc.2014.8.271

[13]

Tadahiro Oh, Mamoru Okamoto, Oana Pocovnicu. On the probabilistic well-posedness of the nonlinear Schrödinger equations with non-algebraic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3479-3520. doi: 10.3934/dcds.2019144

[14]

Reinhard Bürger. A survey of migration-selection models in population genetics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 883-959. doi: 10.3934/dcdsb.2014.19.883

[15]

Peng Zhou, Jiang Yu, Dongmei Xiao. A nonlinear diffusion problem arising in population genetics. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 821-841. doi: 10.3934/dcds.2014.34.821

[16]

A. A. Kirillov. Family algebras. Electronic Research Announcements, 2000, 6: 7-20.

[17]

M. Sumon Hossain, M. Monir Uddin. Iterative methods for solving large sparse Lyapunov equations and application to model reduction of index 1 differential-algebraic-equations. Numerical Algebra, Control & Optimization, 2019, 9 (2) : 173-186. doi: 10.3934/naco.2019013

[18]

Rongsheng Huang, Jinzhi Lei. Cell-type switches induced by stochastic histone modification inheritance. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5601-5619. doi: 10.3934/dcdsb.2019074

[19]

Kimie Nakashima, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, I: Existence and limiting profiles. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 617-641. doi: 10.3934/dcds.2010.27.617

[20]

Yuan Lou, Wei-Ming Ni, Linlin Su. An indefinite nonlinear diffusion problem in population genetics, II: Stability and multiplicity. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 643-655. doi: 10.3934/dcds.2010.27.643

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]