December  2011, 4(6): 1621-1628. doi: 10.3934/dcdss.2011.4.1621

Turing instability in a coupled predator-prey model with different Holling type functional responses

1. 

Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806

Received  April 2009 Revised  November 2009 Published  December 2010

In a reaction-diffusion system, diffusion can induce the instability of a positive equilibrium which is stable with respect to a constant perturbation, therefore, the diffusion may create new patterns when the corresponding system without diffusion fails, as shown by Turing in 1950s. In this paper we study a coupled predator-prey model with different Holling type functional responses, where cross-diffusions are included in such a way that the prey runs away from predator and the predator chase preys. We conduct the Turing instability analysis for each Holling functional response. We prove that if a positive equilibrium solution is linearly stable with respect to the ODE system of the predator-prey model, then it is also linearly stable with respect to the model. So diffusion and cross-diffusion in the predator-prey model with Holling type functional responses given in this paper can not drive Turing instability. However, diffusion and cross-diffusion can still create non-constant positive solutions for the model.
Citation: Zhifu Xie. Turing instability in a coupled predator-prey model with different Holling type functional responses. Discrete & Continuous Dynamical Systems - S, 2011, 4 (6) : 1621-1628. doi: 10.3934/dcdss.2011.4.1621
References:
[1]

X. Chen, Y. Qi and M. Wang, A strongly coupled predator-prey system with non-monotonic functional response,, Nonl. Anal.: TMA, 67 (2007), 1966.  doi: 10.1016/j.na.2006.08.022.  Google Scholar

[2]

L. Chen and A. Jungel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[3]

Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation,, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321.  doi: 10.1017/S0308210500000895.  Google Scholar

[4]

Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95.   Google Scholar

[5]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[6]

Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[7]

S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the three-species food-chain model with cross-diffusion,, ACTA Mathematica Sinica, 50 (2007), 75.   Google Scholar

[8]

L. Hei, Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion,, Nonl. Ana.: RWA, 8 (2007), 619.  doi: 10.1016/j.nonrwa.2006.01.006.  Google Scholar

[9]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly,, Canad. Entomol., 91 (1959), 293.  doi: 10.4039/Ent91293-5.  Google Scholar

[10]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canad. Entomol., 91 (1959), 385.  doi: 10.4039/Ent91385-7.  Google Scholar

[11]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[12]

S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893.  doi: 10.3934/dcdsb.2009.11.893.  Google Scholar

[13]

J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.198101.  Google Scholar

[14]

A. J. Lotka, "Elements of Physical Biology,", Baltimore: Williams & Wilkins Co., (1925).   Google Scholar

[15]

E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient,, Chaos Solitons Fractals, 19 (2004), 367.  doi: 10.1016/S0960-0779(03)00049-3.  Google Scholar

[16]

K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system,, Nonl. Anal., 55 (2003), 313.  doi: 10.1016/S0362-546X(03)00242-6.  Google Scholar

[17]

T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms,, J. Math. Anal. Appl., 323 (2006), 1387.  doi: 10.1016/j.jmaa.2005.11.065.  Google Scholar

[18]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[19]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems,, J. Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[20]

J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction,", Interdisciplinary Applied Mathematics, 17 (2002).   Google Scholar

[21]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion,", Translated by G. N. Parker. Biomathematics, (1980).   Google Scholar

[22]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differential Equations, 200 (2004), 245.   Google Scholar

[23]

J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems,, Preprint., ().   Google Scholar

[24]

F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[25]

A. M. Turing, The chemical basis of morphogenesis,, Phil. Trans. Royal Soc. London B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[26]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi,, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926).   Google Scholar

[27]

M. Wang, Stationary patterns of strongly coupled prey-predator models,, J. Math. Anal. Appl., 292 (2004), 484.  doi: 10.1016/j.jmaa.2003.12.027.  Google Scholar

[28]

X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics,, SIAM J. Math. Anal., 31 (2000), 535.  doi: 10.1137/S0036141098339897.  Google Scholar

[29]

C. S. Zhao, Asymptotic behaviors of a class of $N$-Laplacian Neumann problems with large diffusion,, Nonlinear Anal., 69 (2008), 2496.  doi: 10.1016/j.na.2007.08.028.  Google Scholar

[30]

X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions,, J. Math. Anal. Appl., 332 (2007), 989.  doi: 10.1016/j.jmaa.2006.10.075.  Google Scholar

show all references

References:
[1]

X. Chen, Y. Qi and M. Wang, A strongly coupled predator-prey system with non-monotonic functional response,, Nonl. Anal.: TMA, 67 (2007), 1966.  doi: 10.1016/j.na.2006.08.022.  Google Scholar

[2]

L. Chen and A. Jungel, Analysis of a parabolic cross-diffusion population model without self-diffusion,, J. Differential Equations, 224 (2006), 39.  doi: 10.1016/j.jde.2005.08.002.  Google Scholar

[3]

Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: effects of saturation,, Roy. Soc. Edinburgh Sect. A, 131 (2001), 321.  doi: 10.1017/S0308210500000895.  Google Scholar

[4]

Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment,, Nonlinear Dynamics and Evolution Equations, 48 (2006), 95.   Google Scholar

[5]

Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone,, J. Differential Equations, 229 (2006), 63.  doi: 10.1016/j.jde.2006.01.013.  Google Scholar

[6]

Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model,, Trans. Amer. Math. Soc., 359 (2007), 4557.  doi: 10.1090/S0002-9947-07-04262-6.  Google Scholar

[7]

S. M. Fu, Z. J. Wen and S. B. Cui, On global solutions for the three-species food-chain model with cross-diffusion,, ACTA Mathematica Sinica, 50 (2007), 75.   Google Scholar

[8]

L. Hei, Global bifurcation of co-existence states for a predator-prey-mutualist model with diffusion,, Nonl. Ana.: RWA, 8 (2007), 619.  doi: 10.1016/j.nonrwa.2006.01.006.  Google Scholar

[9]

C. S. Holling, The components of predation as revealed by a study of small mammal predation of the European pine sawfly,, Canad. Entomol., 91 (1959), 293.  doi: 10.4039/Ent91293-5.  Google Scholar

[10]

C. S. Holling, Some characteristics of simple types of predation and parasitism,, Canad. Entomol., 91 (1959), 385.  doi: 10.4039/Ent91385-7.  Google Scholar

[11]

X. J. Hou and A. W. Leung, Traveling wave solutions for a competitive reaction-diffusion system and their asymptotics,, Nonlinear Anal. Real World Appl., 9 (2008), 2196.  doi: 10.1016/j.nonrwa.2007.07.007.  Google Scholar

[12]

S. B. Hsu and J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system,, Discrete Contin. Dyn. Syst. Ser. B, 11 (2009), 893.  doi: 10.3934/dcdsb.2009.11.893.  Google Scholar

[13]

J. Von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification,, Phys. Rev. Lett., 87 (2001).  doi: 10.1103/PhysRevLett.87.198101.  Google Scholar

[14]

A. J. Lotka, "Elements of Physical Biology,", Baltimore: Williams & Wilkins Co., (1925).   Google Scholar

[15]

E. Meron, E. Gilad, J. von Hardenberg, M. Shachak and Y. Zarmi, Vegetation patterns along a rainfall gradient,, Chaos Solitons Fractals, 19 (2004), 367.  doi: 10.1016/S0960-0779(03)00049-3.  Google Scholar

[16]

K. Ik Kim and Z. Lin, Coexistence of three species in a strongly coupled elliptic system,, Nonl. Anal., 55 (2003), 313.  doi: 10.1016/S0362-546X(03)00242-6.  Google Scholar

[17]

T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms,, J. Math. Anal. Appl., 323 (2006), 1387.  doi: 10.1016/j.jmaa.2005.11.065.  Google Scholar

[18]

K. Kuto and Y. Yamada, Multiple coexistence states for a prey-predator system with cross-diffusion,, J. Differential Equations, 197 (2004), 315.  doi: 10.1016/j.jde.2003.08.003.  Google Scholar

[19]

C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis systems,, J. Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[20]

J. D. Murray, "Mathematical Biology. Third Edition. I. An Introduction,", Interdisciplinary Applied Mathematics, 17 (2002).   Google Scholar

[21]

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models, An Extended Version of the Japanese Edition, Ecology and Diffusion,", Translated by G. N. Parker. Biomathematics, (1980).   Google Scholar

[22]

P. Y. H. Pang and M. Wang, Strategy and stationary pattern in a three-species predator-prey model,, J. Differential Equations, 200 (2004), 245.   Google Scholar

[23]

J. P. Shi, Z. F. Xie and K. Little, Cross-diffusion induced instability and stability in reaction-diffusion systems,, Preprint., ().   Google Scholar

[24]

F. Yi, J. Wei and J. P. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system,, J. Differential Equations, 246 (2009), 1944.  doi: 10.1016/j.jde.2008.10.024.  Google Scholar

[25]

A. M. Turing, The chemical basis of morphogenesis,, Phil. Trans. Royal Soc. London B, 237 (1952), 37.  doi: 10.1098/rstb.1952.0012.  Google Scholar

[26]

V. Volterra, Variazioni e fluttuazioni del numero d'individui in specie animali conviventi,, Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2 (1926).   Google Scholar

[27]

M. Wang, Stationary patterns of strongly coupled prey-predator models,, J. Math. Anal. Appl., 292 (2004), 484.  doi: 10.1016/j.jmaa.2003.12.027.  Google Scholar

[28]

X. Wang, Qualitative behavior of solutions of chemotactic diffusion systems: Effects of motility and chemotaxis and dynamics,, SIAM J. Math. Anal., 31 (2000), 535.  doi: 10.1137/S0036141098339897.  Google Scholar

[29]

C. S. Zhao, Asymptotic behaviors of a class of $N$-Laplacian Neumann problems with large diffusion,, Nonlinear Anal., 69 (2008), 2496.  doi: 10.1016/j.na.2007.08.028.  Google Scholar

[30]

X. Zeng, Non-constant positive steady states of a prey-predator system with cross-diffusions,, J. Math. Anal. Appl., 332 (2007), 989.  doi: 10.1016/j.jmaa.2006.10.075.  Google Scholar

[1]

Jun Zhou, Chan-Gyun Kim, Junping Shi. Positive steady state solutions of a diffusive Leslie-Gower predator-prey model with Holling type II functional response and cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3875-3899. doi: 10.3934/dcds.2014.34.3875

[2]

Kazuhiro Oeda. Positive steady states for a prey-predator cross-diffusion system with a protection zone and Holling type II functional response. Conference Publications, 2013, 2013 (special) : 597-603. doi: 10.3934/proc.2013.2013.597

[3]

Shanshan Chen, Junping Shi, Junjie Wei. The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure & Applied Analysis, 2013, 12 (1) : 481-501. doi: 10.3934/cpaa.2013.12.481

[4]

Zhijun Liu, Weidong Wang. Persistence and periodic solutions of a nonautonomous predator-prey diffusion with Holling III functional response and continuous delay. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 653-662. doi: 10.3934/dcdsb.2004.4.653

[5]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[6]

Zengji Du, Xiao Chen, Zhaosheng Feng. Multiple positive periodic solutions to a predator-prey model with Leslie-Gower Holling-type II functional response and harvesting terms. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1203-1214. doi: 10.3934/dcdss.2014.7.1203

[7]

Eric Avila-Vales, Gerardo García-Almeida, Erika Rivero-Esquivel. Bifurcation and spatiotemporal patterns in a Bazykin predator-prey model with self and cross diffusion and Beddington-DeAngelis response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (3) : 717-740. doi: 10.3934/dcdsb.2017035

[8]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[9]

Hongwei Yin, Xiaoyong Xiao, Xiaoqing Wen. Analysis of a Lévy-diffusion Leslie-Gower predator-prey model with nonmonotonic functional response. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2121-2151. doi: 10.3934/dcdsb.2018228

[10]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[11]

Mostafa Bendahmane. Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis. Networks & Heterogeneous Media, 2008, 3 (4) : 863-879. doi: 10.3934/nhm.2008.3.863

[12]

Sebastién Gaucel, Michel Langlais. Some remarks on a singular reaction-diffusion system arising in predator-prey modeling. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 61-72. doi: 10.3934/dcdsb.2007.8.61

[13]

Shuping Li, Weinian Zhang. Bifurcations of a discrete prey-predator model with Holling type II functional response. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 159-176. doi: 10.3934/dcdsb.2010.14.159

[14]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[15]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[16]

Sze-Bi Hsu, Tzy-Wei Hwang, Yang Kuang. Global dynamics of a Predator-Prey model with Hassell-Varley Type functional response. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 857-871. doi: 10.3934/dcdsb.2008.10.857

[17]

Walid Abid, Radouane Yafia, M.A. Aziz-Alaoui, Habib Bouhafa, Azgal Abichou. Global dynamics on a circular domain of a diffusion predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional type. Evolution Equations & Control Theory, 2015, 4 (2) : 115-129. doi: 10.3934/eect.2015.4.115

[18]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[19]

Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607

[20]

Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019214

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]