February  2011, 4(1): 209-222. doi: 10.3934/dcdss.2011.4.209

The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity

1. 

Laboratoire de Mathématiques et Applications UMR CNRS 6086, Université de Poitiers, Téléport 2 - BP 30179, Boulevard Marie et Pierre Curie, 86962 Futuroscope Chasseneuil

2. 

The Institute for Scientific Computing and Applied Mathematics, Indiana University, 831 E. 3rd St., Rawles Hall, Bloomington, IN 47405

Received  June 2009 Revised  September 2009 Published  October 2010

In the present article we consider the nonviscous Shallow Water Equations in space dimension one with Dirichlet boundary conditions for the velocity and we show the locally in time well-posedness of the model.
Citation: Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209
References:
[1]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations,, Phys. D, 237 (2008), 1461.  doi: doi:10.1016/j.physd.2008.03.014.  Google Scholar

[2]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography,, Nonlinearity, 14 (2001), 1493.  doi: doi:10.1088/0951-7715/14/6/305.  Google Scholar

[3]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599.  doi: doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.  Google Scholar

[4]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$,, in Progress in elliptic and parabolic partial differential equations (Capri, (1994), 184.   Google Scholar

[5]

A. Majda, Vorticity and the mathematical theory of incompressible fluid flow,, in, 39 (1986).   Google Scholar

[6]

A. J. Majda, "Compressible Fluid Flows and Systems of Conservation Laws in Several Space Variables,", Springer-Verlag, (1984).   Google Scholar

[7]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge texts in applied mathematics, (2002).   Google Scholar

[8]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water,, Arch. Rational Mech. Anal., 130 (1995), 183.  doi: doi:10.1007/BF00375155.  Google Scholar

[9]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions,, J. Fluid Mech., 591 (2007), 413.  doi: doi:10.1017/S002211200700835X.  Google Scholar

[10]

J. M. Rakotoson, R. Temam and J. Tribbia, Remarks on the nonviscous shallow water equations,, Indiana University Mathematics Journal, 57 (2008), 2969.  doi: doi:10.1512/iumj.2008.57.3699.  Google Scholar

[11]

M. E. Taylor, Partial differential equations. III,, vol. 117 of Applied Mathematical Sciences, 117 (1997).   Google Scholar

show all references

References:
[1]

M. J. P. Cullen, Analysis of the semi-geostrophic shallow water equations,, Phys. D, 237 (2008), 1461.  doi: doi:10.1016/j.physd.2008.03.014.  Google Scholar

[2]

C. D. Levermore and M. Sammartino, A shallow water model with eddy viscosity for basins with varying bottom topography,, Nonlinearity, 14 (2001), 1493.  doi: doi:10.1088/0951-7715/14/6/305.  Google Scholar

[3]

P.-L. Lions, B. Perthame and P. E. Souganidis, Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates,, Comm. Pure Appl. Math., 49 (1996), 599.  doi: doi:10.1002/(SICI)1097-0312(199606)49:6<599::AID-CPA2>3.0.CO;2-5.  Google Scholar

[4]

P.-L. Lions, B. Perthame and P. E. Souganidis, Weak stability of isentropic gas dynamics for $\gamma=5/3$,, in Progress in elliptic and parabolic partial differential equations (Capri, (1994), 184.   Google Scholar

[5]

A. Majda, Vorticity and the mathematical theory of incompressible fluid flow,, in, 39 (1986).   Google Scholar

[6]

A. J. Majda, "Compressible Fluid Flows and Systems of Conservation Laws in Several Space Variables,", Springer-Verlag, (1984).   Google Scholar

[7]

A. J. Majda and A. L. Bertozzi, "Vorticity and Incompressible Flow,", Cambridge texts in applied mathematics, (2002).   Google Scholar

[8]

P. Orenga, Un théorème d'existence de solutions d'un problème de shallow water,, Arch. Rational Mech. Anal., 130 (1995), 183.  doi: doi:10.1007/BF00375155.  Google Scholar

[9]

D. Pritchard and L. Dickinson, The near-shore behaviour of shallow-water waves with localized initial conditions,, J. Fluid Mech., 591 (2007), 413.  doi: doi:10.1017/S002211200700835X.  Google Scholar

[10]

J. M. Rakotoson, R. Temam and J. Tribbia, Remarks on the nonviscous shallow water equations,, Indiana University Mathematics Journal, 57 (2008), 2969.  doi: doi:10.1512/iumj.2008.57.3699.  Google Scholar

[11]

M. E. Taylor, Partial differential equations. III,, vol. 117 of Applied Mathematical Sciences, 117 (1997).   Google Scholar

[1]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[2]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[3]

Pavel Krejčí, Elisabetta Rocca. Well-posedness of an extended model for water-ice phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 439-460. doi: 10.3934/dcdss.2013.6.439

[4]

Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103

[5]

Andreas Hiltebrand, Siddhartha Mishra. Entropy stability and well-balancedness of space-time DG for the shallow water equations with bottom topography. Networks & Heterogeneous Media, 2016, 11 (1) : 145-162. doi: 10.3934/nhm.2016.11.145

[6]

François Bouchut, Vladimir Zeitlin. A robust well-balanced scheme for multi-layer shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 739-758. doi: 10.3934/dcdsb.2010.13.739

[7]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2019  doi: 10.3934/dcdss.2020230

[8]

Ovidiu Carja, Victor Postolache. A Priori estimates for solutions of differential inclusions. Conference Publications, 2011, 2011 (Special) : 258-264. doi: 10.3934/proc.2011.2011.258

[9]

Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete & Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239

[10]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020146

[11]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[12]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[13]

Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601

[14]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[15]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[16]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[17]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[18]

Nora Aïssiouene, Marie-Odile Bristeau, Edwige Godlewski, Jacques Sainte-Marie. A combined finite volume - finite element scheme for a dispersive shallow water system. Networks & Heterogeneous Media, 2016, 11 (1) : 1-27. doi: 10.3934/nhm.2016.11.1

[19]

Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks & Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69

[20]

Roberto Camassa. Characteristics and the initial value problem of a completely integrable shallow water equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 115-139. doi: 10.3934/dcdsb.2003.3.115

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]