February  2011, 4(1): 223-237. doi: 10.3934/dcdss.2011.4.223

Best design for a fastest cells selecting process

1. 

IRMAR, ENS Cachan Bretagne, CNRS, UEB, av Robert Schuman F-35170 Bruz, France, France

Received  May 2009 Revised  September 2009 Published  October 2010

We consider a cell sorting process based on negative dielectrophoresis. The goal is to optimize the shape of an electrode network to speed up the positioning. We first show that the best electric field to impose has to be radial in order to minimize the average time for a group of particles. We can get an explicit formula in the specific case of a uniform distribution of initial positions, through the resolution of the Abel integral equation. Next,we use a least-square numerical procedure to design the electrode's shape.
Citation: Michel Pierre, Grégory Vial. Best design for a fastest cells selecting process. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 223-237. doi: 10.3934/dcdss.2011.4.223
References:
[1]

A. V. Bitsadze, Integral equations of first kind, in "Series on Soviet and East European Mathematics," vol. 7, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

[2]

T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen, Math. Z., 15 (1922), 111-120.

[3]

G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Translated from Russian by S. Smith, in "Translations of Mathematical Monographs," vol. 52, American Mathematical Society, Providence, R.I., 1981.

[4]

M. Frénéa, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Materials Science and Engineering: C, 23 (2003), 597-603.

[5]

Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis, Measurement Science and Technology, 2 (1991), 1142-1146.

[6]

T. Jones, "Electromechanics of Particles," Cambridge University Press, Cambridge, 1995. doi: doi:10.1017/CBO9780511574498.

[7]

H. Morgan, M. P. Hughes and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophysical journal, 77 (1999), 516-525.

[8]

H. A. Pohl, The motion and precipitation of suspensoids in divergent electric fields, Journal of Applied Physics, 22 (1951), 869-871.

[9]

H. A. Pohl, "Dielectrophoresis," Cambridge University Press, Cambridge, 1978.

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Integral Equations," 2nd edition Chapman & Hall/CRC, Boca Raton, FL, 2008.

show all references

References:
[1]

A. V. Bitsadze, Integral equations of first kind, in "Series on Soviet and East European Mathematics," vol. 7, World Scientific Publishing Co. Inc., River Edge, NJ, 1995.

[2]

T. Carleman, Über die Abelsche Integralgleichung mit konstanten Integrationsgrenzen, Math. Z., 15 (1922), 111-120.

[3]

G. I. Eskin, Boundary value problems for elliptic pseudodifferential equations, Translated from Russian by S. Smith, in "Translations of Mathematical Monographs," vol. 52, American Mathematical Society, Providence, R.I., 1981.

[4]

M. Frénéa, S. P. Faure, B. L. Pioufle, P. Coquet and H. Fujita, Positioning living cells on a high-density electrode array by negative dielectrophoresis, Materials Science and Engineering: C, 23 (2003), 597-603.

[5]

Y. Huang and R. Pethig, Electrode design for negative dielectrophoresis, Measurement Science and Technology, 2 (1991), 1142-1146.

[6]

T. Jones, "Electromechanics of Particles," Cambridge University Press, Cambridge, 1995. doi: doi:10.1017/CBO9780511574498.

[7]

H. Morgan, M. P. Hughes and N. G. Green, Separation of submicron bioparticles by dielectrophoresis, Biophysical journal, 77 (1999), 516-525.

[8]

H. A. Pohl, The motion and precipitation of suspensoids in divergent electric fields, Journal of Applied Physics, 22 (1951), 869-871.

[9]

H. A. Pohl, "Dielectrophoresis," Cambridge University Press, Cambridge, 1978.

[10]

A. D. Polyanin and A. V. Manzhirov, "Handbook of Integral Equations," 2nd edition Chapman & Hall/CRC, Boca Raton, FL, 2008.

[1]

Magdi S. Mahmoud, Omar Al-Buraiki. Robust control design of autonomous bicycle kinematics. Numerical Algebra, Control and Optimization, 2014, 4 (3) : 181-191. doi: 10.3934/naco.2014.4.181

[2]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[3]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[4]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[5]

Zhen-Zhen Tao, Bing Sun. A feedback design for numerical solution to optimal control problems based on Hamilton-Jacobi-Bellman equation. Electronic Research Archive, 2021, 29 (5) : 3429-3447. doi: 10.3934/era.2021046

[6]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[7]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[8]

Xia Zhao, Jianping Dou. Bi-objective integrated supply chain design with transportation choices: A multi-objective particle swarm optimization. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1263-1288. doi: 10.3934/jimo.2018095

[9]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[10]

Sriram Nagaraj. Optimization and learning with nonlocal calculus. Foundations of Data Science, 2022  doi: 10.3934/fods.2022009

[11]

Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503

[12]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[13]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[14]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[15]

Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012

[16]

Michael Herty, Veronika Sachers. Adjoint calculus for optimization of gas networks. Networks and Heterogeneous Media, 2007, 2 (4) : 733-750. doi: 10.3934/nhm.2007.2.733

[17]

Eleonora Messina. Numerical simulation of a SIS epidemic model based on a nonlinear Volterra integral equation. Conference Publications, 2015, 2015 (special) : 826-834. doi: 10.3934/proc.2015.0826

[18]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure and Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[19]

Tram Thi Ngoc Nguyen, Anne Wald. On numerical aspects of parameter identification for the Landau-Lifshitz-Gilbert equation in Magnetic Particle Imaging. Inverse Problems and Imaging, 2022, 16 (1) : 89-117. doi: 10.3934/ipi.2021042

[20]

Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 321-337. doi: 10.3934/naco.2021008

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]