April  2011, 4(2): 247-271. doi: 10.3934/dcdss.2011.4.247

Global and exponential attractors for a Ginzburg-Landau model of superfluidity

1. 

Facoltà di Ingegneria, Università e-Campus, 22060 Novedrate (CO), Italy

2. 

Dipartimento di Matematica, Università di Bologna, 40126 Bologna, Italy

3. 

Dipartimento di Matematica e Informatica, Università di Salerno, 84084 Fisciano (SA), Italy

Received  October 2008 Revised  June 2009 Published  November 2010

The long-time behavior of the solutions for a non-isothermal model in superfluidity is investigated. The model describes the transition between the normal and the superfluid phase in liquid 4He by means of a non-linear differential system, where the concentration of the superfluid phase satisfies a non-isothermal Ginzburg-Landau equation. This system, which turns out to be consistent with thermodynamical principles and whose well-posedness has been recently proved, has been shown to admit a Lyapunov functional. This allows to prove existence of the global attractor which consists of the unstable manifold of the stationary solutions. Finally, by exploiting recent techinques of semigroups theory, we prove the existence of an exponential attractor of finite fractal dimension which contains the global attractor.
Citation: Alessia Berti, Valeria Berti, Ivana Bochicchio. Global and exponential attractors for a Ginzburg-Landau model of superfluidity. Discrete and Continuous Dynamical Systems - S, 2011, 4 (2) : 247-271. doi: 10.3934/dcdss.2011.4.247
References:
[1]

R. A. Adams, "Sobolev Spaces," Academic Press, New York, 1975.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

[3]

V. Berti and S. Gatti, Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, Quart. Appl. Math., 64 (2006), 617-639.

[4]

V. Berti and M. Fabrizio, Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459. doi: 10.1002/mma.981.

[5]

V. Berti, M. Fabrizio and C. Giorgi, Gauge invariance and asymptotic behavior for the Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 329 (2007), 357-375. doi: 10.1016/j.jmaa.2006.06.031.

[6]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, New York, 1996.

[7]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.

[8]

Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, Appl. Anal., 53 (1994), 1-17. doi: 10.1080/00036819408840240.

[9]

A. Eden, C. Foias, B. Nicoalenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," John-Wiley, New York, 1994.

[10]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[11]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C.R. Acad.Sci. Paris Ser. I Math., 330 (2000), 713-718. doi: 10.1016/S0764-4442(00)00259-7.

[12]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions, Internat. J. Engrg. Sci., 44 (2006), 529-539. doi: 10.1016/j.ijengsci.2006.02.006.

[13]

M. Fabrizio, A Ginzburg-Landau model for the phase transition in Helium II, Z. Angew. Math. Phys., 61 (2010), 329-340. doi: 10.1007/s00033-009-0011-5.

[14]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dynam. Systems, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.

[15]

J. Fleckinger-Pellé, H. Kaper and P. Takac, Dynamics of the Ginzburg-Landau equations of superconductivity, Nonlinear Anal., 32 (1998), 647-665. doi: 10.1016/S0362-546X(97)00508-7.

[16]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. doi: 10.1090/S0002-9939-05-08340-1.

[17]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Amer. Math. Soc., Providence, 1988.

[18]

H. G. Kaper and P. Takac, An equivalence relation for the Ginzburg-Landau equations of superconductivity, Z. Angew. Math. Phys., 48 (1997), 665-675. doi: 10.1007/s000330050054.

[19]

K. Mendelssohn, Liquid Helium, in "Handbuch Physik" (ed. S. Flugge), Vol. XV, Springer, Berlin (1956), 370-461.

[20]

R. Nibbi, Some generalized Poincaré inequalities and applications to problems arising in electromagnetism, J. Inequal. Appl., 4 (1999), 283-299. doi: 10.1155/S1025583499000405.

[21]

A. Rodriguez-Bernal, B. Wang and R. Willie, Asymptotic behaviour of the time-dependent Ginzburg-Landau equations of superconductivity, Math. Meth. Appl. Sci., 22 (1999), 1647-1669. doi: 10.1002/(SICI)1099-1476(199912)22:18<1647::AID-MMA97>3.0.CO;2-W.

[22]

Q. Tang Q and S. Wang, Time dependent Ginzburg-Landau superconductivity equations, Physica D, 88 (1995), 130-166.

[23]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer-Verlag, New York, 1988.

[24]

D. R. Tilley and J. Tilley, "Superfluidity and Superconductivity," Graduate student series in physics 13, Bristol, 1990.

[25]

M. Tinkham, "Introduction to Superconductivity," McGraw-Hill, New York, 1975.

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces," Academic Press, New York, 1975.

[2]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

[3]

V. Berti and S. Gatti, Parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations, Quart. Appl. Math., 64 (2006), 617-639.

[4]

V. Berti and M. Fabrizio, Existence and uniqueness for a mathematical model in superfluidity, Math. Meth. Appl. Sci., 31 (2008), 1441-1459. doi: 10.1002/mma.981.

[5]

V. Berti, M. Fabrizio and C. Giorgi, Gauge invariance and asymptotic behavior for the Ginzburg-Landau equations of superconductivity, J. Math. Anal. Appl., 329 (2007), 357-375. doi: 10.1016/j.jmaa.2006.06.031.

[6]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions," Springer, New York, 1996.

[7]

M. Conti and V. Pata, Weakly dissipative semilinear equations of viscoelasticity, Commun. Pure Appl. Anal., 4 (2005), 705-720. doi: 10.3934/cpaa.2005.4.705.

[8]

Q. Du, Global existence and uniqueness of solutions of the time-dependent Ginzburg-Landau model for superconductivity, Appl. Anal., 53 (1994), 1-17. doi: 10.1080/00036819408840240.

[9]

A. Eden, C. Foias, B. Nicoalenko and R. Temam, "Exponential Attractors for Dissipative Evolution Equations," John-Wiley, New York, 1994.

[10]

L. C. Evans, "Partial Differential Equations," Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.

[11]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\mathbb{R}^3$, C.R. Acad.Sci. Paris Ser. I Math., 330 (2000), 713-718. doi: 10.1016/S0764-4442(00)00259-7.

[12]

M. Fabrizio, Ginzburg-Landau equations and first and second order phase transitions, Internat. J. Engrg. Sci., 44 (2006), 529-539. doi: 10.1016/j.ijengsci.2006.02.006.

[13]

M. Fabrizio, A Ginzburg-Landau model for the phase transition in Helium II, Z. Angew. Math. Phys., 61 (2010), 329-340. doi: 10.1007/s00033-009-0011-5.

[14]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation, Discrete Contin. Dynam. Systems, 10 (2004), 211-238. doi: 10.3934/dcds.2004.10.211.

[15]

J. Fleckinger-Pellé, H. Kaper and P. Takac, Dynamics of the Ginzburg-Landau equations of superconductivity, Nonlinear Anal., 32 (1998), 647-665. doi: 10.1016/S0362-546X(97)00508-7.

[16]

S. Gatti, M. Grasselli, A. Miranville and V. Pata, A construction of a robust family of exponential attractors, Proc. Amer. Math. Soc., 134 (2006), 117-127. doi: 10.1090/S0002-9939-05-08340-1.

[17]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems," Amer. Math. Soc., Providence, 1988.

[18]

H. G. Kaper and P. Takac, An equivalence relation for the Ginzburg-Landau equations of superconductivity, Z. Angew. Math. Phys., 48 (1997), 665-675. doi: 10.1007/s000330050054.

[19]

K. Mendelssohn, Liquid Helium, in "Handbuch Physik" (ed. S. Flugge), Vol. XV, Springer, Berlin (1956), 370-461.

[20]

R. Nibbi, Some generalized Poincaré inequalities and applications to problems arising in electromagnetism, J. Inequal. Appl., 4 (1999), 283-299. doi: 10.1155/S1025583499000405.

[21]

A. Rodriguez-Bernal, B. Wang and R. Willie, Asymptotic behaviour of the time-dependent Ginzburg-Landau equations of superconductivity, Math. Meth. Appl. Sci., 22 (1999), 1647-1669. doi: 10.1002/(SICI)1099-1476(199912)22:18<1647::AID-MMA97>3.0.CO;2-W.

[22]

Q. Tang Q and S. Wang, Time dependent Ginzburg-Landau superconductivity equations, Physica D, 88 (1995), 130-166.

[23]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer-Verlag, New York, 1988.

[24]

D. R. Tilley and J. Tilley, "Superfluidity and Superconductivity," Graduate student series in physics 13, Bristol, 1990.

[25]

M. Tinkham, "Introduction to Superconductivity," McGraw-Hill, New York, 1975.

[1]

Gregory A. Chechkin, Vladimir V. Chepyzhov, Leonid S. Pankratov. Homogenization of trajectory attractors of Ginzburg-Landau equations with randomly oscillating terms. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1133-1154. doi: 10.3934/dcdsb.2018145

[2]

Lu Zhang, Aihong Zou, Tao Yan, Ji Shu. Weak pullback attractors for stochastic Ginzburg-Landau equations in Bochner spaces. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 749-768. doi: 10.3934/dcdsb.2021063

[3]

Hans G. Kaper, Bixiang Wang, Shouhong Wang. Determining nodes for the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 205-224. doi: 10.3934/dcds.1998.4.205

[4]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[5]

Kolade M. Owolabi, Edson Pindza. Numerical simulation of multidimensional nonlinear fractional Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 835-851. doi: 10.3934/dcdss.2020048

[6]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[7]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[8]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[9]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[10]

Bixiang Wang, Shouhong Wang. Gevrey class regularity for the solutions of the Ginzburg-Landau equations of superconductivity. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 507-522. doi: 10.3934/dcds.1998.4.507

[11]

Yan Zheng, Jianhua Huang. Exponential convergence for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5621-5632. doi: 10.3934/dcdsb.2019075

[12]

Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801

[13]

Mickaël Dos Santos, Oleksandr Misiats. Ginzburg-Landau model with small pinning domains. Networks and Heterogeneous Media, 2011, 6 (4) : 715-753. doi: 10.3934/nhm.2011.6.715

[14]

Fanghua Lin, Ping Zhang. On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 121-142. doi: 10.3934/dcds.2000.6.121

[15]

Iuliana Oprea, Gerhard Dangelmayr. A period doubling route to spatiotemporal chaos in a system of Ginzburg-Landau equations for nematic electroconvection. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 273-296. doi: 10.3934/dcdsb.2018095

[16]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[17]

Dingshi Li, Xiaohu Wang. Asymptotic behavior of stochastic complex Ginzburg-Landau equations with deterministic non-autonomous forcing on thin domains. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 449-465. doi: 10.3934/dcdsb.2018181

[18]

Dingshi Li, Lin Shi, Xiaohu Wang. Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 5121-5148. doi: 10.3934/dcdsb.2019046

[19]

Hong Lu, Mingji Zhang. Dynamics of non-autonomous fractional Ginzburg-Landau equations driven by colored noise. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3553-3576. doi: 10.3934/dcdsb.2020072

[20]

Dandan Ma, Ji Shu, Ling Qin. Wong-Zakai approximations and asymptotic behavior of stochastic Ginzburg-Landau equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (11) : 4335-4359. doi: 10.3934/dcdsb.2020100

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (98)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]