April  2011, 4(2): 351-369. doi: 10.3934/dcdss.2011.4.351

Asymptotics of the Coleman-Gurtin model

1. 

École Normale Supérieure - CERES-ERTI, Normale Supérieure - Ce 75231 Paris Cedex 05, France

2. 

Indiana University Mathematics Department and The Institute of Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405, United States

3. 

Department of Mathematics and The Institute for Scientific Computing and Applied Mathematics, Indiana University, Bloomington, IN 47405

4. 

Politecnico di Milano - Dipartimento di Matematica "F. Brioschi", Via Bonardi 9, 20133 Milano

Received  January 2009 Revised  May 2009 Published  November 2010

This paper is concerned with the integrodifferential equation

$\partial_{t} u-\Delta u -\int_0^\infty \kappa(s)\Delta u(t-s)\d s + \varphi(u)=f$

arising in the Coleman-Gurtin's theory of heat conduction with hereditary memory, in presence of a nonlinearity $\varphi$ of critical growth. Rephrasing the equation within the history space framework, we prove the existence of global and exponential attractors of optimal regularity and finite fractal dimension for the related solution semigroup, acting both on the basic weak-energy space and on a more regular phase space.

Citation: Mickaël D. Chekroun, Francesco di Plinio, Nathan Glatt-Holtz, Vittorino Pata. Asymptotics of the Coleman-Gurtin model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 351-369. doi: 10.3934/dcdss.2011.4.351
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[3]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptot. Anal., 46 (2006), 251.   Google Scholar

[4]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces,, Nonlinearity, 22 (2009), 351.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, "Attractors of Equations of Mathematical Physics,", American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[6]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199.  doi: 10.1007/BF01596912.  Google Scholar

[7]

M. Conti, S. Gatti, M. Grasselli and V. Pata, Two-dimensional reaction-diffusion equations with memory,, Quart. Appl. Math., ().   Google Scholar

[8]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana Univ. Math. J., 55 (2006), 170.  doi: 10.1512/iumj.2006.55.2661.  Google Scholar

[9]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 554.  doi: 10.1007/BF00251609.  Google Scholar

[10]

R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space,, J. Math. Anal. Appl., 32 (1970), 610.  doi: 10.1016/0022-247X(70)90283-0.  Google Scholar

[11]

F. Di Plinio, V. Pata and S. Zelik, On the strongly damped wave equation with memory,, Indiana Univ. Math. J., 57 (2008), 757.  doi: 10.1512/iumj.2008.57.3266.  Google Scholar

[12]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R^3$,, C.R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[13]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Cont. Dyn. Systems, 10 (2004), 221.   Google Scholar

[14]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation,, Rocky Mountain J. Math., 38 (2008), 1117.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[15]

G. Gentili and C. Giorgi, Thermodynamic properties and stability for the heat flux equation with linear memory,, Quart. Appl. Math., 51 (1993), 342.   Google Scholar

[16]

C. Giorgi, A. Marzocchi and V. Pata, Uniform attractors for a non-autonomous semilinear heat equation with memory,, Quart. Appl. Math., 58 (2000), 661.   Google Scholar

[17]

H. Grabmüller, On linear theory of heat conduction in materials with memory,, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976), 119.   Google Scholar

[18]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, Evolution Equations, Semigroups and Functional Analysis, (2002), 155.   Google Scholar

[19]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, (1988).   Google Scholar

[20]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Recherches en Mathématiques Appliqués [Research in Applied Mathematics], (1991).   Google Scholar

[21]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Cambridge University Press, (1991).   Google Scholar

[22]

S. O. Londen and J. A. Nohel, Nonlinear Volterra integrodifferential equation occurring in heat flow,, J. Integral Equations, 6 (1984), 11.   Google Scholar

[23]

Y. I. Lysikov, On the possibility of development of vibrations during heating of the transparent dielectric by optical radiation,, Zh. Prikl. Math. i Tekh. Fiz., 4 (1984), 56.   Google Scholar

[24]

R. K. Miller, An integrodifferential equation for rigid heat conductors with memory,, J. Math. Anal. Appl., 66 (1978), 331.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[25]

A. Miranville and S. Zelik, "Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,", Handbook of Differential Equations: Evolutionary Equations. Vol. \textbf{IV}, IV (2008), 103.   Google Scholar

[26]

J. W. Nunziato, On heat conduction in materials with memory,, Quart. Appl. Math., 29 (1971), 187.   Google Scholar

[27]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.   Google Scholar

[28]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, (1983).   Google Scholar

[29]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Applied Mathematical Sciences, (1997).   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

V. V. Chepyzhov, E. Mainini and V. Pata, Stability of abstract linear semigroups arising from heat conduction with memory,, Asymptot. Anal., 50 (2006), 269.   Google Scholar

[3]

V. V. Chepyzhov and V. Pata, Some remarks on stability of semigroups arising from linear viscoelasticity,, Asymptot. Anal., 46 (2006), 251.   Google Scholar

[4]

V. V. Chepyzhov, V. Pata and M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces,, Nonlinearity, 22 (2009), 351.  doi: 10.1088/0951-7715/22/2/006.  Google Scholar

[5]

V. V. Chepyzhov and M. I. Vishik, "Attractors of Equations of Mathematical Physics,", American Mathematical Society Colloquium Publications, (2002).   Google Scholar

[6]

B. D. Coleman and M. E. Gurtin, Equipresence and constitutive equations for rigid heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199.  doi: 10.1007/BF01596912.  Google Scholar

[7]

M. Conti, S. Gatti, M. Grasselli and V. Pata, Two-dimensional reaction-diffusion equations with memory,, Quart. Appl. Math., ().   Google Scholar

[8]

M. Conti, V. Pata and M. Squassina, Singular limit of differential systems with memory,, Indiana Univ. Math. J., 55 (2006), 170.  doi: 10.1512/iumj.2006.55.2661.  Google Scholar

[9]

C. M. Dafermos, Asymptotic stability in viscoelasticity,, Arch. Rational Mech. Anal., 37 (1970), 554.  doi: 10.1007/BF00251609.  Google Scholar

[10]

R. Datko, Extending a theorem of A. M. Liapunov to Hilbert space,, J. Math. Anal. Appl., 32 (1970), 610.  doi: 10.1016/0022-247X(70)90283-0.  Google Scholar

[11]

F. Di Plinio, V. Pata and S. Zelik, On the strongly damped wave equation with memory,, Indiana Univ. Math. J., 57 (2008), 757.  doi: 10.1512/iumj.2008.57.3266.  Google Scholar

[12]

M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in $\R^3$,, C.R. Acad. Sci. Paris Sér. I Math., 330 (2000), 713.  doi: 10.1016/S0764-4442(00)00259-7.  Google Scholar

[13]

P. Fabrie, C. Galusinski, A. Miranville and S. Zelik, Uniform exponential attractors for a singularly perturbed damped wave equation,, Discrete Cont. Dyn. Systems, 10 (2004), 221.   Google Scholar

[14]

S. Gatti, A. Miranville, V. Pata and S. Zelik, Attractors for semilinear equations of viscoelasticity with very low dissipation,, Rocky Mountain J. Math., 38 (2008), 1117.  doi: 10.1216/RMJ-2008-38-4-1117.  Google Scholar

[15]

G. Gentili and C. Giorgi, Thermodynamic properties and stability for the heat flux equation with linear memory,, Quart. Appl. Math., 51 (1993), 342.   Google Scholar

[16]

C. Giorgi, A. Marzocchi and V. Pata, Uniform attractors for a non-autonomous semilinear heat equation with memory,, Quart. Appl. Math., 58 (2000), 661.   Google Scholar

[17]

H. Grabmüller, On linear theory of heat conduction in materials with memory,, Proc. Roy. Soc. Edinburgh Sect. A, 76 (1976), 119.   Google Scholar

[18]

M. Grasselli and V. Pata, Uniform attractors of nonautonomous systems with memory,, Evolution Equations, Semigroups and Functional Analysis, (2002), 155.   Google Scholar

[19]

J. K. Hale, "Asymptotic Behavior of Dissipative Systems,", Mathematical Surveys and Monographs, (1988).   Google Scholar

[20]

A. Haraux, "Systèmes Dynamiques Dissipatifs et Applications,", Recherches en Mathématiques Appliqués [Research in Applied Mathematics], (1991).   Google Scholar

[21]

O. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Cambridge University Press, (1991).   Google Scholar

[22]

S. O. Londen and J. A. Nohel, Nonlinear Volterra integrodifferential equation occurring in heat flow,, J. Integral Equations, 6 (1984), 11.   Google Scholar

[23]

Y. I. Lysikov, On the possibility of development of vibrations during heating of the transparent dielectric by optical radiation,, Zh. Prikl. Math. i Tekh. Fiz., 4 (1984), 56.   Google Scholar

[24]

R. K. Miller, An integrodifferential equation for rigid heat conductors with memory,, J. Math. Anal. Appl., 66 (1978), 331.  doi: 10.1016/0022-247X(78)90234-2.  Google Scholar

[25]

A. Miranville and S. Zelik, "Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains,", Handbook of Differential Equations: Evolutionary Equations. Vol. \textbf{IV}, IV (2008), 103.   Google Scholar

[26]

J. W. Nunziato, On heat conduction in materials with memory,, Quart. Appl. Math., 29 (1971), 187.   Google Scholar

[27]

V. Pata and A. Zucchi, Attractors for a damped hyperbolic equation with linear memory,, Adv. Math. Sci. Appl., 11 (2001), 505.   Google Scholar

[28]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, (1983).   Google Scholar

[29]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," 2nd edition, Applied Mathematical Sciences, (1997).   Google Scholar

[1]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[2]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[3]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[4]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[5]

Corrado Mascia. Stability analysis for linear heat conduction with memory kernels described by Gamma functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3569-3584. doi: 10.3934/dcds.2015.35.3569

[6]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[7]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[8]

Xueke Pu, Boling Guo. Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinetic & Related Models, 2016, 9 (1) : 165-191. doi: 10.3934/krm.2016.9.165

[9]

Sandra Carillo. Materials with memory: Free energies & solution exponential decay. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1235-1248. doi: 10.3934/cpaa.2010.9.1235

[10]

Chunyou Sun, Daomin Cao, Jinqiao Duan. Non-autonomous wave dynamics with memory --- asymptotic regularity and uniform attractor. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 743-761. doi: 10.3934/dcdsb.2008.9.743

[11]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[12]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[13]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[14]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[15]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[16]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[17]

Yirong Jiang, Nanjing Huang, Zhouchao Wei. Existence of a global attractor for fractional differential hemivariational inequalities. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019216

[18]

Michael L. Frankel, Victor Roytburd. A Finite-dimensional attractor for a nonequilibrium Stefan problem with heat losses. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 35-62. doi: 10.3934/dcds.2005.13.35

[19]

Rogério Martins. One-dimensional attractor for a dissipative system with a cylindrical phase space. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 533-547. doi: 10.3934/dcds.2006.14.533

[20]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (18)
  • HTML views (0)
  • Cited by (1)

[Back to Top]