April  2011, 4(2): 391-407. doi: 10.3934/dcdss.2011.4.391

Phase separation in a gravity field

1. 

Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic

2. 

WIAS Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany, Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano

3. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D–10117 Berlin

Received  May 2009 Revised  August 2009 Published  November 2010

We prove here well-posedness and convergence to equilibria for the solution trajectories associated with a model for solidification of the liquid content of a rigid container in a gravity field. We observe that the gravity effects, which can be neglected without considerable changes of the process on finite time intervals, have a substantial influence on the long time behavior of the evolution system. Without gravity, we find a temperature interval, in which all phase distributions with a prescribed total liquid content are admissible equilibria, while, under the influence of gravity, the only equilibrium distribution in a connected container consists in two pure phases separated by one plane interface perpendicular to the gravity force.
Citation: Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels. Phase separation in a gravity field. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 391-407. doi: 10.3934/dcdss.2011.4.391
References:
[1]

M. Brokate, J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).   Google Scholar

[2]

P. Colli, M. Frémond and A Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.   Google Scholar

[3]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.  doi: 10.3934/dcds.2009.25.63.  Google Scholar

[4]

M. Frémond, "Non-Smooth Thermo-Mechanics,", Springer-Verlag, (2002).   Google Scholar

[5]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.  doi: 10.1142/S0218202506001261.  Google Scholar

[6]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.   Google Scholar

[7]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).   Google Scholar

[8]

P. Krejčí, Hysteresis operators-A new approach to evolution differential inequalities,, Comment. Math. Univ. Carolinae, 33 (1989), 525.   Google Scholar

[9]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.  doi: 10.1137/09075086X.  Google Scholar

[10]

P. Krejčí, Elastoplastic reaction of a container to water freezing,, Mathematica Bohemica, (2010).   Google Scholar

[11]

P. Krejčí, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity,, SIAM J. Math. Anal., 34 (2002), 409.  doi: 10.1137/S0036141001387604.  Google Scholar

[12]

P. Krejčí, J. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions,, Adv. Math. Sci. Appl., 13 (2003), 695.   Google Scholar

[13]

E. Rocca and R. Rossi, A nonlinear degenerating PDE system modelling phase transitions in thermoviscoelastic materials,, J. Differential Equations, 245 (2008), 3327.  doi: 10.1016/j.jde.2008.02.006.  Google Scholar

[14]

E. Rocca and R. Rossi, Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials,, Appl. Math., 53 (2008), 485.  doi: 10.1007/s10492-008-0038-5.  Google Scholar

[15]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996).   Google Scholar

[16]

H. Y. Erbil, "Surface Chemistry of Solid and Liquid Interfaces,", Blackwell Publishing, (2006).   Google Scholar

show all references

References:
[1]

M. Brokate, J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).   Google Scholar

[2]

P. Colli, M. Frémond and A Visintin, Thermo-mechanical evolution of shape memory alloys,, Quart. Appl. Math., 48 (1990), 31.   Google Scholar

[3]

P. Colli, D. Hilhorst, F. Issard-Roch and G. Schimperna, Long time convergence for a class of variational phase field models,, Discrete Contin. Dyn. Syst., 25 (2009), 63.  doi: 10.3934/dcds.2009.25.63.  Google Scholar

[4]

M. Frémond, "Non-Smooth Thermo-Mechanics,", Springer-Verlag, (2002).   Google Scholar

[5]

M. Frémond and E. Rocca, Well-posedness of a phase transition model with the possibility of voids,, Math. Models Methods Appl. Sci., 16 (2006), 559.  doi: 10.1142/S0218202506001261.  Google Scholar

[6]

M. Frémond and E. Rocca, Solid liquid phase changes with different densities,, Q. Appl. Math., 66 (2008), 609.   Google Scholar

[7]

V. Girault and P.-A. Raviart, "Finite Element Methods for Navier-Stokes Equations,", Springer-Verlag, (1986).   Google Scholar

[8]

P. Krejčí, Hysteresis operators-A new approach to evolution differential inequalities,, Comment. Math. Univ. Carolinae, 33 (1989), 525.   Google Scholar

[9]

P. Krejčí, E. Rocca and J. Sprekels, A bottle in a freezer,, SIAM J. Math. Anal., 41 (2009), 1851.  doi: 10.1137/09075086X.  Google Scholar

[10]

P. Krejčí, Elastoplastic reaction of a container to water freezing,, Mathematica Bohemica, (2010).   Google Scholar

[11]

P. Krejčí, J. Sprekels and U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity,, SIAM J. Math. Anal., 34 (2002), 409.  doi: 10.1137/S0036141001387604.  Google Scholar

[12]

P. Krejčí, J. Sprekels and U. Stefanelli, One-dimensional thermo-visco-plastic processes with hysteresis and phase transitions,, Adv. Math. Sci. Appl., 13 (2003), 695.   Google Scholar

[13]

E. Rocca and R. Rossi, A nonlinear degenerating PDE system modelling phase transitions in thermoviscoelastic materials,, J. Differential Equations, 245 (2008), 3327.  doi: 10.1016/j.jde.2008.02.006.  Google Scholar

[14]

E. Rocca and R. Rossi, Global existence of strong solutions to the one-dimensional full model for phase transitions in thermoviscoelastic materials,, Appl. Math., 53 (2008), 485.  doi: 10.1007/s10492-008-0038-5.  Google Scholar

[15]

A. Visintin, "Models of Phase Transitions,", Progress in Nonlinear Differential Equations and Their Applications, 28 (1996).   Google Scholar

[16]

H. Y. Erbil, "Surface Chemistry of Solid and Liquid Interfaces,", Blackwell Publishing, (2006).   Google Scholar

[1]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[6]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[7]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[8]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[9]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[12]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[13]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[15]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[16]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Sören Bartels, Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 71-88. doi: 10.3934/dcdss.2020323

[19]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[20]

Mingjun Zhou, Jingxue Yin. Continuous subsonic-sonic flows in a two-dimensional semi-infinitely long nozzle. Electronic Research Archive, , () : -. doi: 10.3934/era.2020122

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

[Back to Top]