June  2011, 4(3): i-ii. doi: 10.3934/dcdss.2011.4.3i

Preface

1. 

Dipartimento di Matematica, Universita' di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma

2. 

Dipartimento di Matematica F. Enriques, Via Saldini 50, 20133 Milano

3. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

4. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

5. 

Universita' degli studi di Milano, Dipartimento di matematica "F. Enriques'', via Saldini 50, 20133 Milano

Published  November 2010

Science, engineering and economics are full of situations in which one observes the evolution of a given system in time. The systems of interest can differ a lot in nature and their description may require finitely many, as well as infinitely many, variables. Nevertheless, the above models can be formulated in terms of evolution equations, a mathematical structure where the dependence on time plays an essential role. Such equations have long been the object of intensive theoretical study as well as the source of an enormous number of applications.
   A typical class of problems that have been addressed over the years is concerned with the well-posedness of an evolution equation with given initial and boundary conditions (the so-called direct problems). In several applied situations, however, initial conditions are hard to know exactly while measurements of the solution at different stages of its evolution might be available. Different techniques have been developed to recover, from such pieces of information, specific parameters governing the evolution such as forcing terms or diffusion coefficients. The whole body of results in this direction is usually referred to as inverse problems. A third way to approach the subject is to try to influence the evolution of a given system through some kind of external action called control. Control problems may be of very different nature: one may aim at bringing a given system to a desired configuration in finite or infinite time (positional control), or rather try to optimize a performance criterion (optimal control).

For more information please click the “Full Text” above.
Citation: Piermarco Cannarsa, Cecilia Cavaterra, Angelo Favini, Alfredo Lorenzi, Elisabetta Rocca. Preface. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : i-ii. doi: 10.3934/dcdss.2011.4.3i
[1]

Christian Kanzow, Dong-Hui Li, Nobuo Yamashita. Preface. Numerical Algebra, Control and Optimization, 2011, 1 (1) : i-v. doi: 10.3934/naco.2011.1.1i

[2]

Thorsten Koch, Xiaoling Sun. Preface. Numerical Algebra, Control and Optimization, 2012, 2 (4) : i-ii. doi: 10.3934/naco.2012.2.4i

[3]

Eduard Feireisl, Josef Málek, Mirko Rokyta. Preface. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : i-ii. doi: 10.3934/dcdss.2010.3.3i

[4]

Eduard Feireisl, Mirko Rokyta, Josef Málek. Preface. Discrete and Continuous Dynamical Systems - S, 2008, 1 (3) : i-iii. doi: 10.3934/dcdss.2008.1.3i

[5]

Iván Area, Alberto Cabada, José Ángel Cid, Daniel Franco, Eduardo Liz, Rosana Rodríguez-López. Preface. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : i-iv. doi: 10.3934/dcdsb.2019269

[6]

Carlos Castillo-Chavez, Gerardo Chowell. Preface. Mathematical Biosciences & Engineering, 2011, 8 (1) : i-vi. doi: 10.3934/mbe.2011.8.1i

[7]

P. De Maesschalck, Freddy Dumortier, Martin Wechselberger. Preface. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : i-iii. doi: 10.3934/dcdss.2009.2.4i

[8]

Urszula Ledzewicz, Marek Galewski, Andrzej Nowakowski, Andrzej Swierniak, Agnieszka Kalamajska, Ewa Schmeidel. Preface. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : i-ii. doi: 10.3934/dcdsb.2014.19.8i

[9]

Chaudry Masood Khalique, Maria Luz Gandarais, Mufid Abudiab. Preface. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : i-ii. doi: 10.3934/dcdss.201804i

[10]

Zhouping Xin, Tong Yang. Preface. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : i-ii. doi: 10.3934/dcdss.201606i

[11]

Zhaosheng Feng, Wei Feng. Preface. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : i-i. doi: 10.3934/dcdss.2014.7.6i

[12]

Cheng-Chew Lim, Song Wang. Preface. Journal of Industrial and Management Optimization, 2008, 4 (1) : i-ii. doi: 10.3934/jimo.2008.4.1i

[13]

Vadim Kaloshin, Sergey Lototsky, Michael Röckner. Preface. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : i-ii. doi: 10.3934/dcdsb.2006.6.4i

[14]

Wei Kang, Liang Ke, Qi Wang. Preface. Discrete and Continuous Dynamical Systems - B, 2007, 8 (3) : i-i. doi: 10.3934/dcdsb.2007.8.3i

[15]

Noureddine Alaa, Marc Dambrine, Antoine Henrot, Alain Miranville. Preface. Communications on Pure and Applied Analysis, 2012, 11 (6) : i-ii. doi: 10.3934/cpaa.2012.11.6i

[16]

Shengji Li, Nan-Jing Huang, Xinmin Yang. Preface. Numerical Algebra, Control and Optimization, 2011, 1 (3) : i-ii. doi: 10.3934/naco.2011.1.3i

[17]

Avner Friedman, Mirosław Lachowicz, Urszula Ledzewicz, Monika Joanna Piotrowska, Zuzanna Szymanska. Preface. Mathematical Biosciences & Engineering, 2017, 14 (1) : i-i. doi: 10.3934/mbe.201701i

[18]

Baojun Bian, Shanjian Tang, Qi Zhang. Preface. Discrete and Continuous Dynamical Systems, 2015, 35 (11) : i-iv. doi: 10.3934/dcds.2015.35.11i

[19]

Zhaosheng Feng, Jinzhi Lei. Preface. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : i-iv. doi: 10.3934/dcdsb.2011.16.2i

[20]

Frédéric Coquel, Edwige Godlewski, Jean-Marc Hérard, Jacques Segré. Preface. Networks and Heterogeneous Media, 2010, 5 (3) : i-ii. doi: 10.3934/nhm.2010.5.3i

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (0)

[Back to Top]