June  2011, 4(3): i-ii. doi: 10.3934/dcdss.2011.4.3i

Preface

1. 

Dipartimento di Matematica, Universita' di Roma "Tor Vergata", Via della Ricerca Scientifica 1, 00133 Roma

2. 

Dipartimento di Matematica F. Enriques, Via Saldini 50, 20133 Milano

3. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

4. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133, Milano

5. 

Universita' degli studi di Milano, Dipartimento di matematica "F. Enriques'', via Saldini 50, 20133 Milano

Published  November 2010

Science, engineering and economics are full of situations in which one observes the evolution of a given system in time. The systems of interest can differ a lot in nature and their description may require finitely many, as well as infinitely many, variables. Nevertheless, the above models can be formulated in terms of evolution equations, a mathematical structure where the dependence on time plays an essential role. Such equations have long been the object of intensive theoretical study as well as the source of an enormous number of applications.
   A typical class of problems that have been addressed over the years is concerned with the well-posedness of an evolution equation with given initial and boundary conditions (the so-called direct problems). In several applied situations, however, initial conditions are hard to know exactly while measurements of the solution at different stages of its evolution might be available. Different techniques have been developed to recover, from such pieces of information, specific parameters governing the evolution such as forcing terms or diffusion coefficients. The whole body of results in this direction is usually referred to as inverse problems. A third way to approach the subject is to try to influence the evolution of a given system through some kind of external action called control. Control problems may be of very different nature: one may aim at bringing a given system to a desired configuration in finite or infinite time (positional control), or rather try to optimize a performance criterion (optimal control).

For more information please click the “Full Text” above.
Citation: Piermarco Cannarsa, Cecilia Cavaterra, Angelo Favini, Alfredo Lorenzi, Elisabetta Rocca. Preface. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : i-ii. doi: 10.3934/dcdss.2011.4.3i
[1]

Eduard Feireisl, Mirko Rokyta, Josef Málek. Preface. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : i-iii. doi: 10.3934/dcdss.2008.1.3i

[2]

Carlos Castillo-Chavez, Gerardo Chowell. Preface. Mathematical Biosciences & Engineering, 2011, 8 (1) : i-vi. doi: 10.3934/mbe.2011.8.1i

[3]

Christian Kanzow, Dong-Hui Li, Nobuo Yamashita. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (1) : i-v. doi: 10.3934/naco.2011.1.1i

[4]

Zhaosheng Feng, Wei Feng. Preface. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : i-i. doi: 10.3934/dcdss.2014.7.6i

[5]

P. De Maesschalck, Freddy Dumortier, Martin Wechselberger. Preface. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : i-iii. doi: 10.3934/dcdss.2009.2.4i

[6]

Cheng-Chew Lim, Song Wang. Preface. Journal of Industrial & Management Optimization, 2008, 4 (1) : i-ii. doi: 10.3934/jimo.2008.4.1i

[7]

Thorsten Koch, Xiaoling Sun. Preface. Numerical Algebra, Control & Optimization, 2012, 2 (4) : i-ii. doi: 10.3934/naco.2012.2.4i

[8]

Urszula Ledzewicz, Marek Galewski, Andrzej Nowakowski, Andrzej Swierniak, Agnieszka Kalamajska, Ewa Schmeidel. Preface. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : i-ii. doi: 10.3934/dcdsb.2014.19.8i

[9]

Vadim Kaloshin, Sergey Lototsky, Michael Röckner. Preface. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : i-ii. doi: 10.3934/dcdsb.2006.6.4i

[10]

Eduard Feireisl, Josef Málek, Mirko Rokyta. Preface. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : i-ii. doi: 10.3934/dcdss.2010.3.3i

[11]

Chaudry Masood Khalique, Maria Luz Gandarais, Mufid Abudiab. Preface. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : i-ii. doi: 10.3934/dcdss.201804i

[12]

Zhouping Xin, Tong Yang. Preface. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : i-ii. doi: 10.3934/dcdss.201606i

[13]

Noureddine Alaa, Marc Dambrine, Antoine Henrot, Alain Miranville. Preface. Communications on Pure & Applied Analysis, 2012, 11 (6) : i-ii. doi: 10.3934/cpaa.2012.11.6i

[14]

Wei Kang, Liang Ke, Qi Wang. Preface. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : i-i. doi: 10.3934/dcdsb.2007.8.3i

[15]

Ricardo Carretero-González, Jesús Cuevas Maraver, Dimitri J. Frantzeskakis, P.G. Kevrekidis, Faustino Palmero Acebedo. Preface. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : i-iii. doi: 10.3934/dcdss.2011.4.5i

[16]

Shengji Li, Nan-Jing Huang, Xinmin Yang. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (3) : i-ii. doi: 10.3934/naco.2011.1.3i

[17]

Avner Friedman, Mirosław Lachowicz, Urszula Ledzewicz, Monika Joanna Piotrowska, Zuzanna Szymanska. Preface. Mathematical Biosciences & Engineering, 2017, 14 (1) : i-i. doi: 10.3934/mbe.201701i

[18]

Baojun Bian, Shanjian Tang, Qi Zhang. Preface. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : i-iv. doi: 10.3934/dcds.2015.35.11i

[19]

Zhaosheng Feng, Jinzhi Lei. Preface. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : i-iv. doi: 10.3934/dcdsb.2011.16.2i

[20]

Gisèle Ruiz Goldstein, Jerome A. Goldstein, Alain Miranville. Preface. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : i-ii. doi: 10.3934/dcds.2008.22.4i

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

[Back to Top]