April  2011, 4(2): 409-421. doi: 10.3934/dcdss.2011.4.409

Variational inequalities for a non-isothermal phase field model

1. 

Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555

2. 

Department of Mathematics, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555

Received  January 2009 Revised  June 2009 Published  November 2010

We study variational inequalities for a non-isothermal phase field model of the Penrose-Fife type. We consider time-dependent constraints for the order parameter and the Dirichlet boundary condition for the temperature.
Citation: Kota Kumazaki, Masahiro Kubo. Variational inequalities for a non-isothermal phase field model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 409-421. doi: 10.3934/dcdss.2011.4.409
References:
[1]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).   Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).   Google Scholar

[3]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429.  doi: 10.1098/rspa.1994.0030.  Google Scholar

[4]

A. Damlamian and N. Kenmochi, Le problème de Stefan avec conditions latérales variables,, Hiroshima Math. J., 10 (1980), 271.   Google Scholar

[5]

A. Ito and M. Kubo, Well-posedness for an extended Penrose-Fife phase field model with energy balance supplied by Dirichlet boundary conditions,, Nonlinear Anal., 9 (2008), 370.  doi: 10.1016/j.nonrwa.2006.11.005.  Google Scholar

[6]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ. Chiba Univ., 30 (1987), 1.   Google Scholar

[7]

N. Kenmochi and M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions,, Adv. Math. Sci. Appl., 9 (1999), 499.   Google Scholar

[8]

N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising from phase change problems,, Nonlinear Anal., 22 (1994), 1163.  doi: 10.1016/0362-546X(94)90235-6.  Google Scholar

[9]

N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles,, Japan J. Appl. Math., 5 (1988), 87.  doi: 10.1007/BF03167902.  Google Scholar

[10]

M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,, Nonlinear Anal., 63 (2005).  doi: 10.1016/j.na.2005.03.029.  Google Scholar

[11]

M. Kubo and Q. Lu, Evolution equation for nonlinear degenerate parabolic PDE,, Nonlinear Anal., 64 (2006), 1849.  doi: 10.1016/j.na.2005.07.027.  Google Scholar

[12]

K. Kumazaki, A. Ito and M. Kubo, A non-isothermal phase separation with constraints and Dirichlet boundary condition for temperature,, Nonlinear Anal., 71 (2009), 1950.  doi: 10.1016/j.na.2009.01.039.  Google Scholar

[13]

K. Kumazaki, A. Ito and M. Kubo, Generalized solution of a non-isothermal phase separation model,, Discrete Contin. Dyn. Syst. 2009, 2009 (2009), 476.   Google Scholar

[14]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44.  doi: 10.1016/0167-2789(90)90015-H.  Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 43 (1976), 491.   Google Scholar

show all references

References:
[1]

H. Brézis, "Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,", North-Holland, (1973).   Google Scholar

[2]

M. Brokate and J. Sprekels, "Hysteresis and Phase Transitions,", Appl. Math. Sci., 121 (1996).   Google Scholar

[3]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429.  doi: 10.1098/rspa.1994.0030.  Google Scholar

[4]

A. Damlamian and N. Kenmochi, Le problème de Stefan avec conditions latérales variables,, Hiroshima Math. J., 10 (1980), 271.   Google Scholar

[5]

A. Ito and M. Kubo, Well-posedness for an extended Penrose-Fife phase field model with energy balance supplied by Dirichlet boundary conditions,, Nonlinear Anal., 9 (2008), 370.  doi: 10.1016/j.nonrwa.2006.11.005.  Google Scholar

[6]

N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications,, Bull. Fac. Educ. Chiba Univ., 30 (1987), 1.   Google Scholar

[7]

N. Kenmochi and M. Kubo, Weak solutions of nonlinear systems for non-isothermal phase transitions,, Adv. Math. Sci. Appl., 9 (1999), 499.   Google Scholar

[8]

N. Kenmochi and M. Niezgódka, Evolution systems of nonlinear variational inequalities arising from phase change problems,, Nonlinear Anal., 22 (1994), 1163.  doi: 10.1016/0362-546X(94)90235-6.  Google Scholar

[9]

N. Kenmochi and I. Pawlow, Parabolic-elliptic free boundary problems with time-dependent obstacles,, Japan J. Appl. Math., 5 (1988), 87.  doi: 10.1007/BF03167902.  Google Scholar

[10]

M. Kubo, Well-posedness of initial boundary value problem of degenerate parabolic equations,, Nonlinear Anal., 63 (2005).  doi: 10.1016/j.na.2005.03.029.  Google Scholar

[11]

M. Kubo and Q. Lu, Evolution equation for nonlinear degenerate parabolic PDE,, Nonlinear Anal., 64 (2006), 1849.  doi: 10.1016/j.na.2005.07.027.  Google Scholar

[12]

K. Kumazaki, A. Ito and M. Kubo, A non-isothermal phase separation with constraints and Dirichlet boundary condition for temperature,, Nonlinear Anal., 71 (2009), 1950.  doi: 10.1016/j.na.2009.01.039.  Google Scholar

[13]

K. Kumazaki, A. Ito and M. Kubo, Generalized solution of a non-isothermal phase separation model,, Discrete Contin. Dyn. Syst. 2009, 2009 (2009), 476.   Google Scholar

[14]

O. Penrose and P. C. Fife, Thermodynamically consistent models of phase-field type for the kinetics of phase transitions,, Phys. D, 43 (1990), 44.  doi: 10.1016/0167-2789(90)90015-H.  Google Scholar

[15]

Y. Yamada, On evolution equations generated by subdifferential operators,, J. Fac. Sci., 43 (1976), 491.   Google Scholar

[1]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[2]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[3]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[4]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[5]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[6]

Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065

[7]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[8]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[9]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[10]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Sewoong Kim, Doo Seok Lee. Turing instability and dynamic phase transition for the Brusselator model with multiple critical eigenvalues. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021035

[11]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[12]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[15]

Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017

[16]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[17]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[18]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[19]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[20]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]