\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Complete-damage evolution based on energies and stresses

Abstract / Introduction Related Papers Cited by
  • The rate-independent damage model recently developed in [1] allows for complete damage, such that the deformation is no longer well-defined. The evolution can be described in terms of energy densities and stresses. Using concepts of parametrized $\Gamma$-convergence, we generalize the theory to convex, but non-quadratic elastic energies by providing $\Gamma$-convergence of energetic solutions from partial to complete damage under rather general conditions.
    Mathematics Subject Classification: 35K65, 35K85, 49S05, 74C05, 74R05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bouchitté, A. Mielke and T. Roubíček, A complete-damage problem at small strains, Z. angew. Math. Phys. (ZAMP), 60 (2009), 205-236.

    [2]

    G. Bouchitté and M. Valadier, Integral representation of convex functional on a space of measures, J. Funct. Anal., 80 (1988), 398-420.doi: 10.1016/0022-1236(88)90009-2.

    [3]

    A. Braides, "$\Gamma$-Convergence for Beginners," Oxford University Press, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001.

    [4]

    A. DeSimone, J.-J. Marigo and L. Teresi, A damage mechanics approach to stress softening and its application to rubber, Eur. J. Mech. A Solids, 20 (2001), 873-892.doi: 10.1016/S0997-7538(01)01171-8.

    [5]

    E. De Souza Neto, D. Peric and D. Owen, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: Formulation and computational aspects, J. Mech. Phys. Solids, 42 (1994), 1533-1550.doi: 10.1016/0022-5096(94)90086-8.

    [6]

    M. Frémond, K. Kuttler and M. Shillor, Existence and uniqueness of solutions for a dynamic one-dimensional damage model, J. Math. Anal. Appl., 229 (1999), 271-294.doi: 10.1006/jmaa.1998.6160.

    [7]

    G. Francfort and A. Garroni, A variational view of partial brittle damage evolution, Arch. Rational Mech. Anal., 182 (2006), 125-152.doi: 10.1007/s00205-006-0426-5.

    [8]

    G. A. Francfort and J.-J. Marigo, Stable damage evolution in a brittle continuous medium, European J. Mech. A Solids, 12 (1993), 149-189.

    [9]

    G. Francfort and J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem, J. Mech. Phys. Solids, 46 (1998), 1319-1342.doi: 10.1016/S0022-5096(98)00034-9.

    [10]

    G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies, J. reine angew. Math., 595 (2006), 55-91.doi: 10.1515/CRELLE.2006.044.

    [11]

    M. Frémond and B. Nedjar, Damage, gradient of damage and principle of virtual power, Internat. J. Solids Structures, 33 (1996), 1083-1103.doi: 10.1016/0020-7683(95)00074-7.

    [12]

    K. Hackl and H. Stumpf, Micromechanical concept for the analysis of damage evolution in thermo-viscoelastic and quasi-static brittle fracture, Int. J. Solids Structures, 30 (2003), 1567-1584.

    [13]

    D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation, Math. Models Meth. Appl. Sci. (M3AS), 18 (2008), 1529-1569.

    [14]

    D. Knees and A. Mielke, Energy release rate for cracks in finite-strain elasticity, Math. Methods Appl. Sci., 31 (2008), 501-528.doi: 10.1002/mma.922.

    [15]

    D. Knees, C. Zanini and A. Mielke, Crack propagation in polyconvex materials, Physica D, 239 (2010), 1470-1484.doi: 10.1016/j.physd.2009.02.008.

    [16]

    P. M. Mariano and G. Augusti, Basic topics on damage pseudo-potentials, Int. J. Solids Structures, 38 (2001), 1963-1974.doi: 10.1016/S0020-7683(00)00146-3.

    [17]

    A. Mielke, Evolution in rate-independent systems (Ch. 6), In "C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations," vol. 2, pages 461-559. Elsevier B.V., Amsterdam, 2005.

    [18]

    A. Mielke and T. Roubíček, Rate-independent damage processes in nonlinear elasticity, Math. Models Meth. Appl. Sci. (M3AS), 16 (2006), 177-209.

    [19]

    A. Mielke and T. Roubíček, "Rate-Independent Systems: Theory and Application," In preparation, 2011.

    [20]

    A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, In H.-D. Alber, R. Balean and R. Farwig, editors, Proceedings of the Workshop on "Models of Continuum Mechanics in Analysis and Engineering," pages 117-129, Aachen, 1999. Shaker-Verlag.

    [21]

    A. Mielke and F. Theil, On rate-independent hysteresis models, Nonl. Diff. Eqns. Appl. (NoDEA), 11 (2004), 151-189.

    [22]

    U. Mosco, Approximation of the solutions of some variational inequalities, Ann. Scuola Norm. Sup. Pisa, 21 (1967), 373-394.

    [23]

    A. Mielke, T. Roubíček and U. Stefanelli, $\Gamma$-limits and relaxations for rate-independent evolutionary problems, Calc. Var. Part. Diff. Eqns., 31 (2008), 387-416.

    [24]

    A. Mielke, T. Roubíček and J. Zeman, Complete damage in elastic and viscoelastic media and its energetics, Comput. Methods Appl. Mech. Engrg., 199 (2010), 1242-1253.doi: 10.1016/j.cma.2009.09.020.

    [25]

    F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.

    [26]

    M. Ortiz, A constitutive theory for the inelastic behavior of concrete, Mech. Materials, 4 (1985), 67-93.doi: 10.1016/0167-6636(85)90007-9.

    [27]

    M. Sofonea, W. Han and M. Shillor, "Analysis and Approximation of Contact Problems with Adhesion or Damage," volume 276 of "Pure and Applied Mathematics (Boca Raton)," Chapman & Hall/CRC, Boca Raton, FL, 2006.

    [28]

    M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strain: existence and regularity results, Z. angew. Math. Mech. (ZAMM), 90 (2010), 88-112.

    [29]

    M. Thomas, "Damage Evolution for a Model with Regularization," PhD thesis, Institut für Mathematik, Humboldt-Universität zu Berlin, 2009.

    [30]

    A. Visintin, Strong convergence results related to strict convexity, Comm. Partial Differential Equations, 9 (1984), 439-466.doi: 10.1080/03605308408820337.

    [31]

    C. Zălinescu, "Convex Analysis in General Vector Spaces," World Scientific Publishing Co. Inc., River Edge, NJ, 2002.doi: 10.1142/9789812777096.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(208) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return