April  2011, 4(2): 441-466. doi: 10.3934/dcdss.2011.4.441

Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  February 2009 Published  November 2010

In this paper we study a nonlinear thermoviscoelasticity system within the framework of parabolic theory in anisotropic Sobolev spaces with a mixed norm. The application of such a framework allows to generalize the previous results by admitting stronger thermomechanical nonlinearity and a broader class of solution spaces.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137.  doi: 10.1070/IM1971v005n05ABEH001213.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45.   Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364.   Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647.  doi: 10.1080/03605309708821314.  Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1.   Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124.   Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977).   Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551.  doi: 10.1002/mma.582.  Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407.  doi: 10.1002/mma.574.  Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201.   Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002).  doi: 10.4064/dm406-0-1.  Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1.   Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204.   Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189.   Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603.   Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297.   Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007).  doi: 10.2748/tmpub.32.1.  Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137.  doi: 10.1070/IM1971v005n05ABEH001213.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45.   Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364.   Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647.  doi: 10.1080/03605309708821314.  Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1.   Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124.   Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977).   Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551.  doi: 10.1002/mma.582.  Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407.  doi: 10.1002/mma.574.  Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201.   Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002).  doi: 10.4064/dm406-0-1.  Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1.   Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204.   Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189.   Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603.   Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297.   Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007).  doi: 10.2748/tmpub.32.1.  Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

[1]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[3]

Marcel Braukhoff, Ansgar Jüngel. Entropy-dissipating finite-difference schemes for nonlinear fourth-order parabolic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3335-3355. doi: 10.3934/dcdsb.2020234

[4]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[5]

Anton Schiela, Julian Ortiz. Second order directional shape derivatives of integrals on submanifolds. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021017

[6]

Hsin-Lun Li. Mixed Hegselmann-Krause dynamics. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021084

[7]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[8]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[13]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[14]

Mansour Shrahili, Ravi Shanker Dubey, Ahmed Shafay. Inclusion of fading memory to Banister model of changes in physical condition. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 881-888. doi: 10.3934/dcdss.2020051

[15]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[16]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[17]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis of a thermal frictional contact problem with long memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021031

[18]

Demetres D. Kouvatsos, Jumma S. Alanazi, Kevin Smith. A unified ME algorithm for arbitrary open QNMs with mixed blocking mechanisms. Numerical Algebra, Control & Optimization, 2011, 1 (4) : 781-816. doi: 10.3934/naco.2011.1.781

[19]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[20]

Bernold Fiedler, Carlos Rocha, Matthias Wolfrum. Sturm global attractors for $S^1$-equivariant parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 617-659. doi: 10.3934/nhm.2012.7.617

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]