April  2011, 4(2): 441-466. doi: 10.3934/dcdss.2011.4.441

Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm

1. 

System Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw

2. 

Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw

Received  February 2009 Published  November 2010

In this paper we study a nonlinear thermoviscoelasticity system within the framework of parabolic theory in anisotropic Sobolev spaces with a mixed norm. The application of such a framework allows to generalize the previous results by admitting stronger thermomechanical nonlinearity and a broader class of solution spaces.
Citation: Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441
References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137.  doi: 10.1070/IM1971v005n05ABEH001213.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45.   Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364.   Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647.  doi: 10.1080/03605309708821314.  Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1.   Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124.   Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977).   Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551.  doi: 10.1002/mma.582.  Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407.  doi: 10.1002/mma.574.  Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201.   Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002).  doi: 10.4064/dm406-0-1.  Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1.   Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204.   Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189.   Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603.   Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297.   Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007).  doi: 10.2748/tmpub.32.1.  Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

show all references

References:
[1]

O. V. Besov, V. P. Il'in and S. M. Nikolskij, "Integral Representation of Functions and Theorems of Imbeddings,", Nauka, (1975).   Google Scholar

[2]

Ya. S. Bugrov, Function spaces with mixed norm,, Izv. AN SSSR, 35 (1971), 1137.  doi: 10.1070/IM1971v005n05ABEH001213.  Google Scholar

[3]

C. M. Dafermos and L. Hsiao, Global smooth thermomechanical processes in one-dimensional nonlinear thermoviscoelasticity,, Nonlinear Anal., 6 (1982), 435.  doi: 10.1016/0362-546X(82)90058-X.  Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L^p-L^q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

F. Falk, Elastic phase transitions and nonconvex energy functions,, in, (1990), 45.   Google Scholar

[6]

F. Falk and P. Konopka, Three-dimensional Landau theory describing the martensitic phase transformation of shape memory alloys,, Journal of Physics: Condensed Matter, 2 (1990), 61.  doi: 10.1088/0953-8984/2/1/005.  Google Scholar

[7]

K. K. Golovkin, On equivalent norms for fractional spaces,, Trudy Mat. Inst. Steklov, 66 (1962), 364.   Google Scholar

[8]

M. Hieber and J. Prüss, Heat kernels and maximal $L^p-L^q$ estimates for parabolic evolution equations,, Commun. in PDEs, 22 (1997), 1647.  doi: 10.1080/03605309708821314.  Google Scholar

[9]

N. V. Krylov, The Calderon-Zygmund theorem and its application for parabolic equations,, Algebra i Analiz., 13 (2001), 1.   Google Scholar

[10]

P. Maremonti and V. A. Solonnikov, On the estimates of solutions of evolution Stokes problem in anisotropic Sobolev spaces with mixed norm,, Zap. Nauchn. Semin. POMI, 222 (1995), 124.   Google Scholar

[11]

S. M. Nikolskij, "Approximation of Functions of Several Variables and Imbedding Theorems,", Nauka, (1977).   Google Scholar

[12]

I. Pawłow and W. M. Zajączkowski, Unique global solvability in two-dimensional non-linear thermoelasticity,, Math. Meth. Appl. Sci., 28 (2005), 551.  doi: 10.1002/mma.582.  Google Scholar

[13]

I. Pawłow and W. M. Zajączkowski, Global existence to a three-dimensional non-linear thermoelasticity system arising in shape memory materials,, Math. Meth. Appl. Sci., 28 (2005), 407.  doi: 10.1002/mma.574.  Google Scholar

[14]

I. Pawłow and W. M. Zajączkowski, New existence result for a 3-D shape memory model,, in, 71 (2006), 201.   Google Scholar

[15]

I. Pawłow and A. Żochowski, Existence and uniqueness for a three-dimensional thermoelastic system,, Dissertationes Mathematicae, 406 (2002).  doi: 10.4064/dm406-0-1.  Google Scholar

[16]

V. A. Solonnikov, Boundary value problems for linear parabolic systems of general type,, Trudy Mat. Inst. Steklov, 83 (1965), 1.   Google Scholar

[17]

V. A. Solonnikov, Estimates of solutions of the Stokes equations in S. L. Sobolev spaces with a mixed norm,, Zapiski Naucz. Sem. LOMI, 288 (2002), 204.   Google Scholar

[18]

P. Weidemeier, Existence results in $L_p-L_q$ spaces for second order parabolic equations with inhomogeneous Dirichlet boundary conditions,, in, 384 (1998), 189.   Google Scholar

[19]

P. Weidemaier, Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm,, Electr. Res. Announc. Am. Math. Soc., 8 (2002), 47.  doi: 10.1090/S1079-6762-02-00104-X.  Google Scholar

[20]

S. Yoshikawa, Unique global existence for a three-dimensional thermoelastic system of shape memory alloys,, Adv. Math. Sci Appl., 15 (2005), 603.   Google Scholar

[21]

S. Yoshikawa, Small energy global existence for a two-dimensional thermoelastic system of shape memory materials,, in, 23 (2005), 297.   Google Scholar

[22]

S. Yoshikawa, Global solutions for shape memory alloy systems,, Tohoku Math. Publ., 32 (2007).  doi: 10.2748/tmpub.32.1.  Google Scholar

[23]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, Quasilinear thermoelasticity system arising in shape memory materials,, SIAM J. Math. Anal., 38 (2007), 1733.  doi: 10.1137/060653159.  Google Scholar

[24]

S. Yoshikawa, I. Pawłow and W. M. Zajączkowski, A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat,, Commun. Pure Appl. Anal., 8 (2009), 1093.  doi: 10.3934/cpaa.2009.8.1093.  Google Scholar

[1]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[2]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[3]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[4]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[5]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[7]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[8]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[9]

Federico Rodriguez Hertz, Zhiren Wang. On $ \epsilon $-escaping trajectories in homogeneous spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 329-357. doi: 10.3934/dcds.2020365

[10]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[11]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[12]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[13]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[16]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[19]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]