Citation: |
[1] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems," Oxford Science Publications, 2000. |
[2] |
M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, 11 (1994), 91-133. |
[3] |
F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, Minimizing total variation flow, Differential Integral Equations, 14 (2001), 321-360. |
[4] |
F. Andreu, C. Ballester, V. Caselles and J. M. Mazón, The dirichlet problem for the total variation flow, J. Funct. Anal., 180 (2001), 347-403.doi: 10.1006/jfan.2000.3698. |
[5] |
V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Noordhoff International Publishing, 1976. |
[6] |
G. Bellettini, V. Caselles, A. Chambolle and M. Novaga, Crystalline mean curvature flow of convex sets, Arch. Rat. Mech. Anal., 179 (2006), 109-152.doi: 10.1007/s00205-005-0387-0. |
[7] |
H. Brézis, "Opérateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espace de Hilbert," North-Holland, Amsterdam, 1973. |
[8] |
V. Caselles, A. Chambolle, S. Moll and M. Novaga, A characterization of convex calibrable sets in $\mathbbR^N$ with respect to anisotropic norms, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 803-832.doi: 10.1016/j.anihpc.2008.04.003. |
[9] |
L. C. Evans and R. F. Gariepy, "Measure Theory and Fine Properties of Functions", Studies in Advanced Mathematics, CRC Press, Inc., Boca Raton, 1992. |
[10] |
Y. Giga and P. Rybka, Facet bending in the driven crystalline curvature flow in the plane, J. Geom. Anal., 18 (2008), 109-147.doi: 10.1007/s12220-007-9004-9. |
[11] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics, 80, Birkhäuser, 1984. |
[12] |
T. Ishiwata, Motion of non-convex polygons by crystalline curvature and almost convexity phenomena, Japan J. Indust. Appl. Math., 25 (2008), 233-253.doi: 10.1007/BF03167521. |
[13] |
N. Kenmochi, Systems of nonlinear PDEs arising from dynamical phase transitions, in "Phase Transitions and Hysteresis (Montecatini Terme, 1993)," Lecture Notes in Math., 1584, Springer, Berlin, (1994), 39-86. |
[14] |
N. Kenmochi, Y. Mizuta and T. Nagai, Projections onto convex sets, convex functions and their subdifferentials, Bull. Fac. Edu., Chiba Univ., 29 (1980), 11-22. |
[15] |
J. L. Lions and E. Magenes, "Non-Homogeneous Boundary Value Problems and Applications Vol. I," Springer-Verlag, 1972. |
[16] |
J. S. Moll, The anisotropic total variation flow, Math. Annalen., 332 (2005), 177-218.doi: 10.1007/s00208-004-0624-0. |
[17] |
M. Novaga and E. Paolini, Stability of crystalline evolutions, Math. Mod. Meth. Appl. Sci., 15 (2005), 1-17.doi: 10.1142/S0218202505000571. |
[18] |
A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc., 48 (1942), 883-890.doi: 10.1090/S0002-9904-1942-07811-6. |
[19] |
K. Shirakawa, Stability for steady-state solutions of a nonisothermal Allen-Cahn equation generated by a total variation energy, in "Nonlinear Partial Differential Equations and Their Applications," GAKUTO Internat. Ser. Math. Sci. Appl., 20, Gakkōtosho, (2004), 289-304. |
[20] |
K. Shirakawa, Large-time behavior for a phase field system associated with total variation energy, Adv. Math. Sci. Appl., 15 (2005), 1-27. |
[21] |
K. Shirakawa, Stability for steady-state patterns in phase field dynamics associated with total variation energies, Discrete Contin. Dyn. Syst., 15 (2006), 1215-1236.doi: 10.3934/dcds.2006.15.1215. |
[22] |
K. Shirakawa, Stability for phase field systems involving indefinite surface tension coefficients, in "Dissipative Phase Transitions," Series on Advances in Mathematics for Applied Sciences, 71, World Scientific Publishing, (2006), 269-288. |
[23] |
K. Shirakawa, Stability analysis for two dimensional Allen-Cahn equations associated with crystalline type energies, Discrete Contin. Dyn. Syst. 2009, Dynamical Systems, Differential Equations and Applications. 7th AIMS Conference, suppl., 697-707. |
[24] |
K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy, Nonlinear Anal., 60 (2005), 257-282. |
[25] |
A. Visintin, "Models of Phase Transitions," Progress in Nonlinear Differential Equations and Their Applications, 28, Birkhäuser, Boston, 1996. |