-
Previous Article
Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces
- DCDS-S Home
- This Issue
-
Next Article
Preface
Regularity of boundary traces for a fluid-solid interaction model
1. | Università degli Studi di Firenze, Dipartimento di Matematica Applicata, Via S. Marta 3, 50139 Firenze |
2. | Department of Mathematics, University of Virginia, Charlottesville, VA 22904 |
References:
show all references
References:
[1] |
Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems and Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83 |
[2] |
Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems and Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681 |
[3] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part II: The nonlinear system.. Evolution Equations and Control Theory, 2014, 3 (1) : 83-118. doi: 10.3934/eect.2014.3.83 |
[4] |
Sébastien Court. Stabilization of a fluid-solid system, by the deformation of the self-propelled solid. Part I: The linearized system.. Evolution Equations and Control Theory, 2014, 3 (1) : 59-82. doi: 10.3934/eect.2014.3.59 |
[5] |
David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure and Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143 |
[6] |
Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure and Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123 |
[7] |
T. Tachim Medjo, Louis Tcheugoue Tebou. Robust control problems in fluid flows. Discrete and Continuous Dynamical Systems, 2005, 12 (3) : 437-463. doi: 10.3934/dcds.2005.12.437 |
[8] |
Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems and Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173 |
[9] |
Bavo Langerock. Optimal control problems with variable endpoints. Conference Publications, 2003, 2003 (Special) : 507-516. doi: 10.3934/proc.2003.2003.507 |
[10] |
Alberto Bressan, Yunho Hong. Optimal control problems on stratified domains. Networks and Heterogeneous Media, 2007, 2 (2) : 313-331. doi: 10.3934/nhm.2007.2.313 |
[11] |
M'hamed Kesri. Structural stability of optimal control problems. Communications on Pure and Applied Analysis, 2005, 4 (4) : 743-756. doi: 10.3934/cpaa.2005.4.743 |
[12] |
Piermarco Cannarsa, Hélène Frankowska, Elsa M. Marchini. On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems - B, 2009, 11 (3) : 629-653. doi: 10.3934/dcdsb.2009.11.629 |
[13] |
T. Zolezzi. Extended wellposedness of optimal control problems. Discrete and Continuous Dynamical Systems, 1995, 1 (4) : 547-553. doi: 10.3934/dcds.1995.1.547 |
[14] |
Jean-Pierre de la Croix, Magnus Egerstedt. Analyzing human-swarm interactions using control Lyapunov functions and optimal control. Networks and Heterogeneous Media, 2015, 10 (3) : 609-630. doi: 10.3934/nhm.2015.10.609 |
[15] |
Changjun Yu, Shuxuan Su, Yanqin Bai. On the optimal control problems with characteristic time control constraints. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1305-1320. doi: 10.3934/jimo.2021021 |
[16] |
Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545 |
[17] |
Lorena Bociu, Lucas Castle, Kristina Martin, Daniel Toundykov. Optimal control in a free boundary fluid-elasticity interaction. Conference Publications, 2015, 2015 (special) : 122-131. doi: 10.3934/proc.2015.0122 |
[18] |
Yunfei Yuan, Changchun Liu. Optimal control for the coupled chemotaxis-fluid models in two space dimensions. Electronic Research Archive, 2021, 29 (6) : 4269-4296. doi: 10.3934/era.2021085 |
[19] |
Giulia Cavagnari. Regularity results for a time-optimal control problem in the space of probability measures. Mathematical Control and Related Fields, 2017, 7 (2) : 213-233. doi: 10.3934/mcrf.2017007 |
[20] |
M. Delgado-Téllez, Alberto Ibort. On the geometry and topology of singular optimal control problems and their solutions. Conference Publications, 2003, 2003 (Special) : 223-233. doi: 10.3934/proc.2003.2003.223 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]