February  2011, 4(1): 51-66. doi: 10.3934/dcdss.2011.4.51

A doubly nonlinear parabolic equation with a singular potential

1. 

Université de La Rochelle, Laboratoire MIA, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, I-41100 Modena, Italy

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

Received  July 2009 Revised  September 2009 Published  October 2010

Our aim in this paper is to study the long time behavior, in terms of finite dimensional attractors, of doubly nonlinear Allen-Cahn type equations with singular potentials.
Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential,, J. Math. Anal. Appl., 343 (2008), 557.  doi: doi:10.1016/j.jmaa.2008.01.077.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential,", J. Math. Anal. Appl., 348 (2008), 1029.  doi: doi:10.1016/j.jmaa.2008.07.058.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations,", in, 37 (1994).   Google Scholar

[5]

A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems,, J. Dyn. Diff. Eqns., 3 (1991), 87.  doi: doi:10.1007/BF01049490.  Google Scholar

[6]

A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation,, J. Math. Anal. Appl., 185 (1994), 321.  doi: doi:10.1006/jmaa.1994.1251.  Google Scholar

[7]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: doi:10.1016/0167-2789(95)00173-5.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", in, 23 (1967).   Google Scholar

[9]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243.  doi: doi:10.1006/jdeq.2001.4087.  Google Scholar

[10]

A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations,, Cent. Eur. J. Math., 4 (2006), 163.  doi: doi:10.1007/s11533-005-0010-5.  Google Scholar

[11]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type,, Nonlinearity, 20 (2007), 1773.  doi: doi:10.1088/0951-7715/20/8/001.  Google Scholar

[12]

A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations,, J. Math. Anal. Appl., 339 (2008), 281.  doi: doi:10.1016/j.jmaa.2007.06.028.  Google Scholar

[13]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1988).   Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations,", North-Holland, (1992).   Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential,, J. Math. Anal. Appl., 343 (2008), 557.  doi: doi:10.1016/j.jmaa.2008.01.077.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential,", J. Math. Anal. Appl., 348 (2008), 1029.  doi: doi:10.1016/j.jmaa.2008.07.058.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations,", in, 37 (1994).   Google Scholar

[5]

A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems,, J. Dyn. Diff. Eqns., 3 (1991), 87.  doi: doi:10.1007/BF01049490.  Google Scholar

[6]

A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation,, J. Math. Anal. Appl., 185 (1994), 321.  doi: doi:10.1006/jmaa.1994.1251.  Google Scholar

[7]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance,, Physica D, 92 (1996), 178.  doi: doi:10.1016/0167-2789(95)00173-5.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", in, 23 (1967).   Google Scholar

[9]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243.  doi: doi:10.1006/jdeq.2001.4087.  Google Scholar

[10]

A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations,, Cent. Eur. J. Math., 4 (2006), 163.  doi: doi:10.1007/s11533-005-0010-5.  Google Scholar

[11]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type,, Nonlinearity, 20 (2007), 1773.  doi: doi:10.1088/0951-7715/20/8/001.  Google Scholar

[12]

A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations,, J. Math. Anal. Appl., 339 (2008), 281.  doi: doi:10.1016/j.jmaa.2007.06.028.  Google Scholar

[13]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics,", Springer, (1988).   Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[3]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[4]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[5]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[6]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[7]

Pierluigi Colli, Gianni Gilardi, Gabriela Marinoschi. Solvability and sliding mode control for the viscous Cahn–Hilliard system with a possibly singular potential. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020051

[8]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[9]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[10]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[11]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[12]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[13]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[14]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[20]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

[Back to Top]