\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A doubly nonlinear parabolic equation with a singular potential

Abstract Related Papers Cited by
  • Our aim in this paper is to study the long time behavior, in terms of finite dimensional attractors, of doubly nonlinear Allen-Cahn type equations with singular potentials.
    Mathematics Subject Classification: 35B41, 35B45, 35K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.

    [2]

    L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.doi: doi:10.1016/j.jmaa.2008.01.077.

    [3]

    L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030.doi: doi:10.1016/j.jmaa.2008.07.058.

    [4]

    A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994.

    [5]

    A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131.doi: doi:10.1007/BF01049490.

    [6]

    A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339.doi: doi:10.1006/jmaa.1994.1251.

    [7]

    M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192.doi: doi:10.1016/0167-2789(95)00173-5.

    [8]

    O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967.

    [9]

    J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279.doi: doi:10.1006/jdeq.2001.4087.

    [10]

    A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182.doi: doi:10.1007/s11533-005-0010-5.

    [11]

    A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.doi: doi:10.1088/0951-7715/20/8/001.

    [12]

    A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294.doi: doi:10.1016/j.jmaa.2007.06.028.

    [13]

    R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(92) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return