February  2011, 4(1): 51-66. doi: 10.3934/dcdss.2011.4.51

A doubly nonlinear parabolic equation with a singular potential

1. 

Université de La Rochelle, Laboratoire MIA, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Dipartimento di Matematica, Università di Modena e Reggio Emilia, Via Campi 213/B, I-41100 Modena, Italy

3. 

Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 6086 - SP2MI, Boulevard Marie et Pierre Curie - Téléport 2, F-86962 Chasseneuil Futuroscope Cedex, France

Received  July 2009 Revised  September 2009 Published  October 2010

Our aim in this paper is to study the long time behavior, in terms of finite dimensional attractors, of doubly nonlinear Allen-Cahn type equations with singular potentials.
Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville. A doubly nonlinear parabolic equation with a singular potential. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 51-66. doi: 10.3934/dcdss.2011.4.51
References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.  Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566. doi: doi:10.1016/j.jmaa.2008.01.077.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030. doi: doi:10.1016/j.jmaa.2008.07.058.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994.  Google Scholar

[5]

A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131. doi: doi:10.1007/BF01049490.  Google Scholar

[6]

A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339. doi: doi:10.1006/jmaa.1994.1251.  Google Scholar

[7]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192. doi: doi:10.1016/0167-2789(95)00173-5.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967.  Google Scholar

[9]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279. doi: doi:10.1006/jdeq.2001.4087.  Google Scholar

[10]

A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182. doi: doi:10.1007/s11533-005-0010-5.  Google Scholar

[11]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797. doi: doi:10.1088/0951-7715/20/8/001.  Google Scholar

[12]

A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294. doi: doi:10.1016/j.jmaa.2007.06.028.  Google Scholar

[13]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988.  Google Scholar

show all references

References:
[1]

A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," North-Holland, Amsterdam, 1992.  Google Scholar

[2]

L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566. doi: doi:10.1016/j.jmaa.2008.01.077.  Google Scholar

[3]

L. Cherfils, S. Gatti and A. Miranville, Corrigendum to "Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential," J. Math. Anal. Appl., 348 (2008), 1029-1030. doi: doi:10.1016/j.jmaa.2008.07.058.  Google Scholar

[4]

A. Eden, C. Foias, B. Nicolaenko and R.Temam, "Exponential Attractors for Dissipative Evolution Equations," in "Research in Applied Mathematics," Vol. 37, John-Wiley, New York, 1994.  Google Scholar

[5]

A. Eden, B. Michaux and J.-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131. doi: doi:10.1007/BF01049490.  Google Scholar

[6]

A. Eden and J.-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339. doi: doi:10.1006/jmaa.1994.1251.  Google Scholar

[7]

M. Gurtin, Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance, Physica D, 92 (1996), 178-192. doi: doi:10.1016/0167-2789(95)00173-5.  Google Scholar

[8]

O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," in "Translations of Mathematical Monographs," Vol. 23, American Mathematical Society, Providence, R.I., 1967.  Google Scholar

[9]

J. Málek and D. Prážak, Large time behavior via the method of $l$-trajectories, J. Diff. Eqns., 181 (2002), 243-279. doi: doi:10.1006/jdeq.2001.4087.  Google Scholar

[10]

A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, Cent. Eur. J. Math., 4 (2006), 163-182. doi: doi:10.1007/s11533-005-0010-5.  Google Scholar

[11]

A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797. doi: doi:10.1088/0951-7715/20/8/001.  Google Scholar

[12]

A. Rougirel, Convergence to steady state and attractors for doubly nonlinear equations, J. Math. Anal. Appl., 339 (2008), 281-294. doi: doi:10.1016/j.jmaa.2007.06.028.  Google Scholar

[13]

R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Springer, New York, 1988.  Google Scholar

[1]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

[2]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5321-5335. doi: 10.3934/dcdsb.2020345

[4]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[5]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031

[6]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure & Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[7]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[8]

S.V. Zelik. The attractor for a nonlinear hyperbolic equation in the unbounded domain. Discrete & Continuous Dynamical Systems, 2001, 7 (3) : 593-641. doi: 10.3934/dcds.2001.7.593

[9]

Dalibor Pražák. On the dimension of the attractor for the wave equation with nonlinear damping. Communications on Pure & Applied Analysis, 2005, 4 (1) : 165-174. doi: 10.3934/cpaa.2005.4.165

[10]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[11]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete & Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[12]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[13]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure & Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

[14]

Wenxian Shen. Global attractor and rotation number of a class of nonlinear noisy oscillators. Discrete & Continuous Dynamical Systems, 2007, 18 (2&3) : 597-611. doi: 10.3934/dcds.2007.18.597

[15]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[16]

Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations & Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241

[17]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[18]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[19]

Zhijian Yang, Zhiming Liu. Global attractor for a strongly damped wave equation with fully supercritical nonlinearities. Discrete & Continuous Dynamical Systems, 2017, 37 (4) : 2181-2205. doi: 10.3934/dcds.2017094

[20]

Azer Khanmamedov, Sema Simsek. Existence of the global attractor for the plate equation with nonlocal nonlinearity in $ \mathbb{R} ^{n}$. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 151-172. doi: 10.3934/dcdsb.2016.21.151

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (0)

[Back to Top]