[1]
|
H. Amann, Dual semigroups and second order linear elliptic boundary value problems, Israel. J. Math., 45 (1983), 225-254.
|
[2]
|
H. Amann and J. Escher, Strongly continuous dual semigroups, Ann. Mat. Pura e Appl., IV (1996), 41-62.
|
[3]
|
S. Anita, "Analysis and Control of Age-Dependent Population Dynamics," Mathematical Modelling: Theory and Applications, 11, Kluwer Academic Publisher, Dordrecht, 2000.
|
[4]
|
A. Ashyralyev and P. E. Sobolevskii, "Well-Posedness of Parabolic Difference Equations," Birkhäuser, 1994.
|
[5]
|
B. P. Ayati, A variable step method for an age-dependent population model with nonlinear diffusion, SIAM J. Numer. Anal., 37 (2000), 1571-1589.
|
[6]
|
P. L. Butzer and H. Berens, "Semi-Groups of Operators and Approximation," Springer-Verlag, 1967.
|
[7]
|
G. Da Prato and P. Grisvard, Sommes d' opérateurs linéaires et équations différentielles opérationelles, J. Math. Pures et Appl., 54 (1975), 305-387.
|
[8]
|
G. Di Blasio, Linear parabolic equations in $L^p$-spaces, Ann. Mat. Pura e Appl., IV (1984), 55-104.
|
[9]
|
G. Di Blasio, An ultraparabolic problem arising from age-dependent population diffusion, Discrete Continuous Dynam. Systems - A, 25 (2009), 843-858.
|
[10]
|
A. Ducrot, Travelling wave solutions fo a scalar age-structured equation, Discrete Continuous Dynam. Systems - B, 7 (2007), 251-273.
|
[11]
|
J. Dyson, E. Sanchez, R. Villella-Bressan and G. F. Webb, An age and spatially structured model of tumor invasion with haptotaxis, Discrete Continuous Dynam. Systems - B, 8 (2007), 45-60.
|
[12]
|
M. Gyllenberg, A. Osipov and L. Päivärinta, The inverse problem for linear age-structured population dynamics, J. Evol. Equ., 2 (2002), 223-239.
|
[13]
|
A. Rhandi and R. Schnaubelt, Asymptotic behaviour of a non-autonomous population equation with diffusion in $L^1$, Discrete Continuous Dynam. Systems, 5 (1999), 663-683.
|
[14]
|
W. Rundell, Determining the death rate for an age-structured population from census data, SIAM J. Appl. Math., 53 (1993), 1731-1746.
|
[15]
|
H. Triebel, "Interpolation Theory, Functions Spaces, Differential Operators," North-Holland, 1978.
|
[16]
|
G. F. Webb, Population models structured by age, size and position, in "Structured Population Models in Biology and Epidemiology," Lecture Notes in Mathematics, Vol. 1936, Springer-Verlag, Berlin-New York, (2008), 1-49.
|