June  2011, 4(3): 565-579. doi: 10.3934/dcdss.2011.4.565

Isotropic-nematic phase transitions in liquid crystals

1. 

Department of Mathematics, Piazza di Porta S. Donato 5, 40127-Bologna

2. 

Dipartimento di Matematica, Via Valotti 9, 25133 Brescia, Italy

3. 

DIBE, Via Opera Pia 11a, 16145 Genova, Italy

Received  April 2009 Revised  August 2009 Published  November 2010

The paper derives the evolution equations for a nematic liquid crystal, under the action of an electromagnetic field, and characterizes the transition between the isotropic and the nematic state. The non-simple character of the continuum is described by means of the director, of the degree of orientation and their space and time derivatives. Both the degree of orientation and the director are regarded as internal variables and their evolution is established by requiring compatibility with the second law of thermodynamics. As a result, admissible forms of the evolution equations are found in terms of appropriate terms arising from a free-enthalpy potential. For definiteness a free-enthalpy is then considered which provides directly the dielectric and magnetic anisotropies. A characterization is given of thermally-induced transitions with the degree of orientation as a phase parameter.
Citation: Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565
References:
[1]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon, (1998).   Google Scholar

[2]

S. Singh, Phase transitions in liquid crystals,, Phys. Rep., 324 (2000), 107.   Google Scholar

[3]

J. L. Ericksen, Liquid crystals with variable degree of orientation,, Arch. Rational Mech. Anal., 113 (1991), 97.   Google Scholar

[4]

C.-P. Fan, Second order phase transitions in liquid crystals,, Chin. J. Phys., 12 (1974), 24.   Google Scholar

[5]

C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal,, Phys. Rev. Letters, 25 (1970), 500.   Google Scholar

[6]

M. C. Calderer, Stability of shear flows of polimeric liquid crystals,, J. Non-Newtonian Fluid Mech., 43 (1992), 351.   Google Scholar

[7]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.   Google Scholar

[8]

P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow,, Arch. Rational Mech. Anal., 174 (2004), 151.   Google Scholar

[9]

D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.   Google Scholar

[10]

P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal,, Proc. R. Soc. Lond. - A, 458 (2002), 1.   Google Scholar

[11]

P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals,, Phys. Rev. - E, 74 (2006), 031708.  doi: doi:10.1103/PhysRevE.74.031708.  Google Scholar

[12]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. - E, 75 (2007), 051707.  doi: doi:10.1103/PhysRevE.75.051707.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica - D, 214 (2006), 144.   Google Scholar

show all references

References:
[1]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon, (1998).   Google Scholar

[2]

S. Singh, Phase transitions in liquid crystals,, Phys. Rep., 324 (2000), 107.   Google Scholar

[3]

J. L. Ericksen, Liquid crystals with variable degree of orientation,, Arch. Rational Mech. Anal., 113 (1991), 97.   Google Scholar

[4]

C.-P. Fan, Second order phase transitions in liquid crystals,, Chin. J. Phys., 12 (1974), 24.   Google Scholar

[5]

C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal,, Phys. Rev. Letters, 25 (1970), 500.   Google Scholar

[6]

M. C. Calderer, Stability of shear flows of polimeric liquid crystals,, J. Non-Newtonian Fluid Mech., 43 (1992), 351.   Google Scholar

[7]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.   Google Scholar

[8]

P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow,, Arch. Rational Mech. Anal., 174 (2004), 151.   Google Scholar

[9]

D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.   Google Scholar

[10]

P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal,, Proc. R. Soc. Lond. - A, 458 (2002), 1.   Google Scholar

[11]

P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals,, Phys. Rev. - E, 74 (2006), 031708.  doi: doi:10.1103/PhysRevE.74.031708.  Google Scholar

[12]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. - E, 75 (2007), 051707.  doi: doi:10.1103/PhysRevE.75.051707.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica - D, 214 (2006), 144.   Google Scholar

[1]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[2]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[3]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[4]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[5]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]