June  2011, 4(3): 565-579. doi: 10.3934/dcdss.2011.4.565

Isotropic-nematic phase transitions in liquid crystals

1. 

Department of Mathematics, Piazza di Porta S. Donato 5, 40127-Bologna

2. 

Dipartimento di Matematica, Via Valotti 9, 25133 Brescia, Italy

3. 

DIBE, Via Opera Pia 11a, 16145 Genova, Italy

Received  April 2009 Revised  August 2009 Published  November 2010

The paper derives the evolution equations for a nematic liquid crystal, under the action of an electromagnetic field, and characterizes the transition between the isotropic and the nematic state. The non-simple character of the continuum is described by means of the director, of the degree of orientation and their space and time derivatives. Both the degree of orientation and the director are regarded as internal variables and their evolution is established by requiring compatibility with the second law of thermodynamics. As a result, admissible forms of the evolution equations are found in terms of appropriate terms arising from a free-enthalpy potential. For definiteness a free-enthalpy is then considered which provides directly the dielectric and magnetic anisotropies. A characterization is given of thermally-induced transitions with the degree of orientation as a phase parameter.
Citation: Mauro Fabrizio, Claudio Giorgi, Angelo Morro. Isotropic-nematic phase transitions in liquid crystals. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 565-579. doi: 10.3934/dcdss.2011.4.565
References:
[1]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon, (1998).   Google Scholar

[2]

S. Singh, Phase transitions in liquid crystals,, Phys. Rep., 324 (2000), 107.   Google Scholar

[3]

J. L. Ericksen, Liquid crystals with variable degree of orientation,, Arch. Rational Mech. Anal., 113 (1991), 97.   Google Scholar

[4]

C.-P. Fan, Second order phase transitions in liquid crystals,, Chin. J. Phys., 12 (1974), 24.   Google Scholar

[5]

C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal,, Phys. Rev. Letters, 25 (1970), 500.   Google Scholar

[6]

M. C. Calderer, Stability of shear flows of polimeric liquid crystals,, J. Non-Newtonian Fluid Mech., 43 (1992), 351.   Google Scholar

[7]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.   Google Scholar

[8]

P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow,, Arch. Rational Mech. Anal., 174 (2004), 151.   Google Scholar

[9]

D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.   Google Scholar

[10]

P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal,, Proc. R. Soc. Lond. - A, 458 (2002), 1.   Google Scholar

[11]

P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals,, Phys. Rev. - E, 74 (2006), 031708.  doi: doi:10.1103/PhysRevE.74.031708.  Google Scholar

[12]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. - E, 75 (2007), 051707.  doi: doi:10.1103/PhysRevE.75.051707.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica - D, 214 (2006), 144.   Google Scholar

show all references

References:
[1]

P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals,", Clarendon, (1998).   Google Scholar

[2]

S. Singh, Phase transitions in liquid crystals,, Phys. Rep., 324 (2000), 107.   Google Scholar

[3]

J. L. Ericksen, Liquid crystals with variable degree of orientation,, Arch. Rational Mech. Anal., 113 (1991), 97.   Google Scholar

[4]

C.-P. Fan, Second order phase transitions in liquid crystals,, Chin. J. Phys., 12 (1974), 24.   Google Scholar

[5]

C.-P. Fan and M. J. Stephen, Isotropic-nematic phase transition in liquid crystal,, Phys. Rev. Letters, 25 (1970), 500.   Google Scholar

[6]

M. C. Calderer, Stability of shear flows of polimeric liquid crystals,, J. Non-Newtonian Fluid Mech., 43 (1992), 351.   Google Scholar

[7]

F. M. Leslie, Some constitutive equations for liquid crystals,, Arch. Rational Mech. Anal., 28 (1968), 265.   Google Scholar

[8]

P. Cermelli, E. Fried and M. E. Gurtin, Sharp-interface nematic-isotropic phase transitions without flow,, Arch. Rational Mech. Anal., 174 (2004), 151.   Google Scholar

[9]

D. R. Anderson, D. E. Carlson and E. Fried, A continuum-mechanical theory for nematic elastomers,, J. Elasticity, 56 (1999), 33.   Google Scholar

[10]

P. Cermelli and E. Fried, The evolution equation for a disclination in a nematic liquid crystal,, Proc. R. Soc. Lond. - A, 458 (2002), 1.   Google Scholar

[11]

P. Biscari, G. Napoli and S. Turzi, Bulk and surface biaxiality in nematic liquid crystals,, Phys. Rev. - E, 74 (2006), 031708.  doi: doi:10.1103/PhysRevE.74.031708.  Google Scholar

[12]

P. Biscari, M. C. Calderer and E. M. Terentjev, Landau-de Gennes theory of isotropic-nematic-smectic liquid crystal transitions,, Phys. Rev. - E, 75 (2007), 051707.  doi: doi:10.1103/PhysRevE.75.051707.  Google Scholar

[13]

M. Fabrizio, C. Giorgi and A. Morro, A thermodynamic approach to non-isothermal phase-field evolution in continuum physics,, Physica - D, 214 (2006), 144.   Google Scholar

[1]

Pavel Drábek, Stephen Robinson. Continua of local minimizers in a quasilinear model of phase transitions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 163-172. doi: 10.3934/dcds.2013.33.163

[2]

Sylvie Benzoni-Gavage, Laurent Chupin, Didier Jamet, Julien Vovelle. On a phase field model for solid-liquid phase transitions. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1997-2025. doi: 10.3934/dcds.2012.32.1997

[3]

Valeria Berti, Mauro Fabrizio, Diego Grandi. A phase field model for liquid-vapour phase transitions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 317-330. doi: 10.3934/dcdss.2013.6.317

[4]

Chun Liu. Dynamic theory for incompressible Smectic-A liquid crystals: Existence and regularity. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 591-608. doi: 10.3934/dcds.2000.6.591

[5]

Fanghua Lin, Chun Liu. Partial regularity of the dynamic system modeling the flow of liquid crystals. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 1-22. doi: 10.3934/dcds.1996.2.1

[6]

Alice Fiaschi. Rate-independent phase transitions in elastic materials: A Young-measure approach. Networks & Heterogeneous Media, 2010, 5 (2) : 257-298. doi: 10.3934/nhm.2010.5.257

[7]

Jiayan Yang, Dongpei Zhang. Superfluidity phase transitions for liquid $ ^{4} $He system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5107-5120. doi: 10.3934/dcdsb.2019045

[8]

Wenya Ma, Yihang Hao, Xiangao Liu. Shape optimization in compressible liquid crystals. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1623-1639. doi: 10.3934/cpaa.2015.14.1623

[9]

Honghu Liu. Phase transitions of a phase field model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 883-894. doi: 10.3934/dcdsb.2011.16.883

[10]

Claude Vallée, Camelia Lerintiu, Danielle Fortuné, Kossi Atchonouglo, Jamal Chaoufi. Modelling of implicit standard materials. Application to linear coaxial non-associated constitutive laws. Discrete & Continuous Dynamical Systems - S, 2013, 6 (6) : 1641-1649. doi: 10.3934/dcdss.2013.6.1641

[11]

Yuming Chu, Yihang Hao, Xiangao Liu. Global weak solutions to a general liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2681-2710. doi: 10.3934/dcds.2013.33.2681

[12]

Carlos J. García-Cervera, Sookyung Joo. Reorientation of smectic a liquid crystals by magnetic fields. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 1983-2000. doi: 10.3934/dcdsb.2015.20.1983

[13]

Jinhae Park, Feng Chen, Jie Shen. Modeling and simulation of switchings in ferroelectric liquid crystals. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1419-1440. doi: 10.3934/dcds.2010.26.1419

[14]

Shaoqiang Tang, Huijiang Zhao. Stability of Suliciu model for phase transitions. Communications on Pure & Applied Analysis, 2004, 3 (4) : 545-556. doi: 10.3934/cpaa.2004.3.545

[15]

Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139

[16]

Chun-Hsiung Hsia, Tian Ma, Shouhong Wang. Rotating Boussinesq equations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 99-130. doi: 10.3934/dcds.2010.28.99

[17]

Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399

[18]

Hao Zhang, Kai Jiang, Pingwen Zhang. Dynamic transitions for Landau-Brazovskii model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 607-627. doi: 10.3934/dcdsb.2014.19.607

[19]

Kiah Wah Ong. Dynamic transitions of generalized Kuramoto-Sivashinsky equation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1225-1236. doi: 10.3934/dcdsb.2016.21.1225

[20]

Yiqiu Mao, Dongming Yan, ChunHsien Lu. Dynamic transitions and stability for the acetabularia whorl formation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5989-6004. doi: 10.3934/dcdsb.2019117

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]