\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces

Abstract Related Papers Cited by
  • Let us consider the operator $A_n u$:=$(-1)^{n+1} \alpha (x) u^{(2n)}$ on $H^n_0(0,1)$ with domain $D(A_n)$:=$\{u\in H^n_0(0,1)\cap H^{2n}$loc$(0,1)\ :\ A_n u\in H^n_0(0,1)\}$, where $n\in\N$, $\alpha\in H^n_0(0,1)$, $\alpha (x)>0$ in $(0,1).$ Under additional boundedness and integrability conditions on $\alpha$ with respect to $x^{2n} (1-x)^{2n},$ we prove that $(A_n,D(A_n))$ is nonpositive and selfadjoint, thus it generates a cosine function, hence an analytic semigroup in the right half plane on $H^n_0(0,1)$. Analyticity results are also proved in $H^n (0,1).$ In particular, all results work well when $\alpha (x)=x^{j} (1-x)^{j}$ for $|j-n|<1/2$. Hardy type inequalities are also obtained.
    Mathematics Subject Classification: Primary: 47D06, 47E05, 34B05; Secondary: 34L40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Fourth order ordinary differential operators with general Wentzell boundary conditions, Rocky Mountain J. Math., 38 (2008), 445-460.doi: doi:10.1216/RMJ-2008-38-2-445.

    [2]

    A. Favini, J. A. Goldstein and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation, in "Stochastic Processes and Functional Analysis" (Riverside, CA, 1994), Lecture Notes in Pure and Appl. Math. 186, Dekker, New York, (1997), 85-100.

    [3]

    W. Feller, The parabolic differential equations and the associated semi-groups of transformations, Ann. of Math., 55 (1952), 468-519.doi: doi:10.2307/1969644.

    [4]

    G. Metafune, Analyticity for some degenerate evolution equations on the unit interval, Studia Math., 127 (1998), 251-276.

    [5]

    J. A. Goldstein, "Semigroups of Linear Operators and Applications," The Clarendon Press, Oxford University Press, New York, 1985.

    [6]

    A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983.

    [7]

    H. Tanabe, "Equations of Evolution," 6. Pitman (Advanced Publishing Program), Boston Mass. - London, 1976.

    [8]

    J. Tidblom, $L^p$ Hardy inequalities in general domains, Research Reports in Mathematics Stockholm University no. 4, http://www2.math.su.se/reports/2003/4/2003-4.pdf, 2003.

    [9]

    H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators," Mathematical Library, 18, North-Holland Publishing Co., Amsterdam - New York, 1978.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(53) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return