June  2011, 4(3): 581-593. doi: 10.3934/dcdss.2011.4.581

Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces

1. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna, Italy

2. 

Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, United States, United States

3. 

Dipartimento di Matematica, Università degli Studi di Bari, Via Orabona, 4, 70125 Bari

Received  May 2009 Revised  November 2009 Published  November 2010

Let us consider the operator $A_n u$:=$(-1)^{n+1} \alpha (x) u^{(2n)}$ on $H^n_0(0,1)$ with domain $D(A_n)$:=$\{u\in H^n_0(0,1)\cap H^{2n}$loc$(0,1)\ :\ A_n u\in H^n_0(0,1)\}$, where $n\in\N$, $\alpha\in H^n_0(0,1)$, $\alpha (x)>0$ in $(0,1).$ Under additional boundedness and integrability conditions on $\alpha$ with respect to $x^{2n} (1-x)^{2n},$ we prove that $(A_n,D(A_n))$ is nonpositive and selfadjoint, thus it generates a cosine function, hence an analytic semigroup in the right half plane on $H^n_0(0,1)$. Analyticity results are also proved in $H^n (0,1).$ In particular, all results work well when $\alpha (x)=x^{j} (1-x)^{j}$ for $|j-n|<1/2$. Hardy type inequalities are also obtained.
Citation: Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581
References:
[1]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Fourth order ordinary differential operators with general Wentzell boundary conditions,, Rocky Mountain J. Math., 38 (2008), 445. doi: doi:10.1216/RMJ-2008-38-2-445. Google Scholar

[2]

A. Favini, J. A. Goldstein and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation,, in, 186 (1997), 85. Google Scholar

[3]

W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math., 55 (1952), 468. doi: doi:10.2307/1969644. Google Scholar

[4]

G. Metafune, Analyticity for some degenerate evolution equations on the unit interval,, Studia Math., 127 (1998), 251. Google Scholar

[5]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", The Clarendon Press, (1985). Google Scholar

[6]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). Google Scholar

[7]

H. Tanabe, "Equations of Evolution,", 6. Pitman (Advanced Publishing Program), (1976). Google Scholar

[8]

J. Tidblom, $L^p$ Hardy inequalities in general domains,, Research Reports in Mathematics Stockholm University no. 4, (2003), 2003. Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", Mathematical Library, 18 (1978). Google Scholar

show all references

References:
[1]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, Fourth order ordinary differential operators with general Wentzell boundary conditions,, Rocky Mountain J. Math., 38 (2008), 445. doi: doi:10.1216/RMJ-2008-38-2-445. Google Scholar

[2]

A. Favini, J. A. Goldstein and S. Romanelli, An analytic semigroup associated to a degenerate evolution equation,, in, 186 (1997), 85. Google Scholar

[3]

W. Feller, The parabolic differential equations and the associated semi-groups of transformations,, Ann. of Math., 55 (1952), 468. doi: doi:10.2307/1969644. Google Scholar

[4]

G. Metafune, Analyticity for some degenerate evolution equations on the unit interval,, Studia Math., 127 (1998), 251. Google Scholar

[5]

J. A. Goldstein, "Semigroups of Linear Operators and Applications,", The Clarendon Press, (1985). Google Scholar

[6]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Mathematical Sciences, 44 (1983). Google Scholar

[7]

H. Tanabe, "Equations of Evolution,", 6. Pitman (Advanced Publishing Program), (1976). Google Scholar

[8]

J. Tidblom, $L^p$ Hardy inequalities in general domains,, Research Reports in Mathematics Stockholm University no. 4, (2003), 2003. Google Scholar

[9]

H. Triebel, "Interpolation Theory, Function Spaces, Differential Operators,", Mathematical Library, 18 (1978). Google Scholar

[1]

Angela A. Albanese, Elisabetta M. Mangino. Analytic semigroups and some degenerate evolution equations defined on domains with corners. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 595-615. doi: 10.3934/dcds.2015.35.595

[2]

Jeremy LeCrone, Gieri Simonett. Continuous maximal regularity and analytic semigroups. Conference Publications, 2011, 2011 (Special) : 963-970. doi: 10.3934/proc.2011.2011.963

[3]

Angela A. Albanese, Xavier Barrachina, Elisabetta M. Mangino, Alfredo Peris. Distributional chaos for strongly continuous semigroups of operators. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2069-2082. doi: 10.3934/cpaa.2013.12.2069

[4]

V. Pata, Sergey Zelik. A result on the existence of global attractors for semigroups of closed operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 481-486. doi: 10.3934/cpaa.2007.6.481

[5]

Antonio Algaba, Cristóbal García, Jaume Giné. Analytic integrability for some degenerate planar systems. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2797-2809. doi: 10.3934/cpaa.2013.12.2797

[6]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[7]

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa. On the positive semigroups generated by Fleming-Viot type differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 323-340. doi: 10.3934/cpaa.2019017

[8]

Gary Froyland, Cecilia González-Tokman, Anthony Quas. Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools. Journal of Computational Dynamics, 2014, 1 (2) : 249-278. doi: 10.3934/jcd.2014.1.249

[9]

Doug Hensley. Continued fractions, Cantor sets, Hausdorff dimension, and transfer operators and their analytic extension. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2417-2436. doi: 10.3934/dcds.2012.32.2417

[10]

Piermarco Cannarsa, Genni Fragnelli, Dario Rocchetti. Null controllability of degenerate parabolic operators with drift. Networks & Heterogeneous Media, 2007, 2 (4) : 695-715. doi: 10.3934/nhm.2007.2.695

[11]

Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363

[12]

Giuseppe Da Prato, Alessandra Lunardi. Maximal dissipativity of a class of elliptic degenerate operators in weighted $L^2$ spaces. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 751-760. doi: 10.3934/dcdsb.2006.6.751

[13]

Motohiro Sobajima. On the threshold for Kato's selfadjointness problem and its $L^p$-generalization. Evolution Equations & Control Theory, 2014, 3 (4) : 699-711. doi: 10.3934/eect.2014.3.699

[14]

Fritz Colonius, Marco Spadini. Fundamental semigroups for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 447-463. doi: 10.3934/dcds.2006.14.447

[15]

José A. Conejero, Alfredo Peris. Chaotic translation semigroups. Conference Publications, 2007, 2007 (Special) : 269-276. doi: 10.3934/proc.2007.2007.269

[16]

Min He. On continuity in parameters of integrated semigroups. Conference Publications, 2003, 2003 (Special) : 403-412. doi: 10.3934/proc.2003.2003.403

[17]

Alastair Fletcher. Quasiregular semigroups with examples. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2157-2172. doi: 10.3934/dcds.2019090

[18]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[19]

David W. Pravica, Michael J. Spurr. Analytic continuation into the future. Conference Publications, 2003, 2003 (Special) : 709-716. doi: 10.3934/proc.2003.2003.709

[20]

Peter K. Friz, I. Kukavica, James C. Robinson. Nodal parametrisation of analytic attractors. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 643-657. doi: 10.3934/dcds.2001.7.643

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (0)

[Back to Top]