June  2011, 4(3): 595-614. doi: 10.3934/dcdss.2011.4.595

Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces

1. 

Dipartimento di Matematica, Università degli Studi di Bologna, Piazza di Porta S. Donato, 5, 40126 Bologna

2. 

Raymond and Beverly Sackler School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel

Received  December 2008 Revised  November 2009 Published  November 2010

We prove an isomorphism of nonlocal boundary value problems for higher order ordinary differential-operator equations generated by one operator in UMD Banach spaces in appropriate Sobolev and interpolation spaces. The main condition is given in terms of $\R$-boundedness of some families of bounded operators generated by the resolvent of the operator of the equation. This implies maximal $L_p$-regularity for the problem. Then we study Fredholmnees of more general problems, namely, with linear abstract perturbation operators both in the equation and boundary conditions. We also present an application of obtained abstract results to boundary value problems for higher order elliptic partial differential equations.
Citation: Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595
References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II,, Comm. Pure Appl. Math., 12 (1959), 623.

[2]

W. Arendt and M. Duelli, Maximal $L^p$-regularity for parabolic and elliptic equations on the line,, J. Evol. Equ., 6 (2006), 773. doi: doi:10.1007/s00028-006-0292-5.

[3]

W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions,, J. Operator Theory, 38 (1997), 87.

[4]

R. Denk, G. Dore, M. Hieber, J. Prüss and A. Venni, New thoughts on old results of R. T. Seeley,, Mathematische Annalen, 328 (2004), 545. doi: doi:10.1007/s00208-003-0493-y.

[5]

R. Denk, M. Hieber and J. Prüss, "$R$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type,", Mem. Amer. Math. Soc., (2003).

[6]

A. Favini, V. Shakhmurov and Ya. Yakubov, Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces,, Semigroup Forum, 79 (2009), 22. doi: doi:10.1007/s00233-009-9138-0.

[7]

A. Favini and Ya. Yakubov, Higher order ordinary differential-operator equations on the whole axis in UMD Banach spaces,, Differential and Integral Equations, 21 (2008), 497.

[8]

A. Favini and Ya. Yakubov, Regular boundary value problems for elliptic differential-operator equations of the fourth order in UMD Banach spaces,, Scientiae Mathematicae Japonicae, 70 (2009), 183.

[9]

A. Favini and Ya. Yakubov, Irregular boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces,, Mathematische Annalen, 348 (2010), 601. doi: doi:10.1007/s00208-010-0491-9.

[10]

N. Kalton, P. Kunstmann and L. Weis, Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators,, Mathematische Annalen, 336 (2006), 747. doi: doi:10.1007/s00208-005-0742-3.

[11]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Mathematische Annalen, 321 (2001), 319. doi: doi:10.1007/s002080100231.

[12]

P. C. Kunstmann and L. Weis, "Maximal $L_p$-Regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-Functional Calculus,", in, 1855 (2004), 65.

[13]

H. Triebel, "Interpolation Theory. Function Spaces. Differential Operators,", North-Holland, (1978).

[14]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity,, Mathematische Annalen, 319 (2001), 735. doi: doi:10.1007/PL00004457.

[15]

S. Yakubov and Ya. Yakubov, "Differential-Operator Equations. Ordinary and Partial Differential Equations,", Chapman and Hall/CRC, (2000).

show all references

References:
[1]

S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, II,, Comm. Pure Appl. Math., 12 (1959), 623.

[2]

W. Arendt and M. Duelli, Maximal $L^p$-regularity for parabolic and elliptic equations on the line,, J. Evol. Equ., 6 (2006), 773. doi: doi:10.1007/s00028-006-0292-5.

[3]

W. Arendt and A. F. M. ter Elst, Gaussian estimates for second order elliptic operators with boundary conditions,, J. Operator Theory, 38 (1997), 87.

[4]

R. Denk, G. Dore, M. Hieber, J. Prüss and A. Venni, New thoughts on old results of R. T. Seeley,, Mathematische Annalen, 328 (2004), 545. doi: doi:10.1007/s00208-003-0493-y.

[5]

R. Denk, M. Hieber and J. Prüss, "$R$-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type,", Mem. Amer. Math. Soc., (2003).

[6]

A. Favini, V. Shakhmurov and Ya. Yakubov, Regular boundary value problems for complete second order elliptic differential-operator equations in UMD Banach spaces,, Semigroup Forum, 79 (2009), 22. doi: doi:10.1007/s00233-009-9138-0.

[7]

A. Favini and Ya. Yakubov, Higher order ordinary differential-operator equations on the whole axis in UMD Banach spaces,, Differential and Integral Equations, 21 (2008), 497.

[8]

A. Favini and Ya. Yakubov, Regular boundary value problems for elliptic differential-operator equations of the fourth order in UMD Banach spaces,, Scientiae Mathematicae Japonicae, 70 (2009), 183.

[9]

A. Favini and Ya. Yakubov, Irregular boundary value problems for second order elliptic differential-operator equations in UMD Banach spaces,, Mathematische Annalen, 348 (2010), 601. doi: doi:10.1007/s00208-010-0491-9.

[10]

N. Kalton, P. Kunstmann and L. Weis, Perturbation and interpolation theorems for the $H^\infty$-calculus with applications to differential operators,, Mathematische Annalen, 336 (2006), 747. doi: doi:10.1007/s00208-005-0742-3.

[11]

N. Kalton and L. Weis, The $H^\infty$-calculus and sums of closed operators,, Mathematische Annalen, 321 (2001), 319. doi: doi:10.1007/s002080100231.

[12]

P. C. Kunstmann and L. Weis, "Maximal $L_p$-Regularity for Parabolic Equations, Fourier Multiplier Theorems and $H^\infty$-Functional Calculus,", in, 1855 (2004), 65.

[13]

H. Triebel, "Interpolation Theory. Function Spaces. Differential Operators,", North-Holland, (1978).

[14]

L. Weis, Operator-valued Fourier multiplier theorems and maximal $L_p$-regularity,, Mathematische Annalen, 319 (2001), 735. doi: doi:10.1007/PL00004457.

[15]

S. Yakubov and Ya. Yakubov, "Differential-Operator Equations. Ordinary and Partial Differential Equations,", Chapman and Hall/CRC, (2000).

[1]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[2]

Mustapha Cheggag, Angelo Favini, Rabah Labbas, Stéphane Maingot, Ahmed Medeghri. Complete abstract differential equations of elliptic type with general Robin boundary conditions, in UMD spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 523-538. doi: 10.3934/dcdss.2011.4.523

[3]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[4]

Tokushi Sato, Tatsuya Watanabe. Singular positive solutions for a fourth order elliptic problem in $R$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 245-268. doi: 10.3934/cpaa.2011.10.245

[5]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[6]

Shouming Zhou. The Cauchy problem for a generalized $b$-equation with higher-order nonlinearities in critical Besov spaces and weighted $L^p$ spaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4967-4986. doi: 10.3934/dcds.2014.34.4967

[7]

Ti-Jun Xiao, Jin Liang. Pazy-type characterization for differentiability of propagators of higher order Cauchy problems in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1999, 5 (3) : 651-662. doi: 10.3934/dcds.1999.5.651

[8]

Naoki Fujino, Mitsuru Yamazaki. Burgers' type equation with vanishing higher order. Communications on Pure & Applied Analysis, 2007, 6 (2) : 505-520. doi: 10.3934/cpaa.2007.6.505

[9]

Engu Satynarayana, Manas R. Sahoo, Manasa M. Higher order asymptotic for Burgers equation and Adhesion model. Communications on Pure & Applied Analysis, 2017, 16 (1) : 253-272. doi: 10.3934/cpaa.2017012

[10]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[11]

Angelo Favini, Gisèle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Selfadjointness of degenerate elliptic operators on higher order Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 581-593. doi: 10.3934/dcdss.2011.4.581

[12]

Frank Arthur, Xiaodong Yan, Mingfeng Zhao. A Liouville-type theorem for higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3317-3339. doi: 10.3934/dcds.2014.34.3317

[13]

Ioan Bucataru. A setting for higher order differential equation fields and higher order Lagrange and Finsler spaces. Journal of Geometric Mechanics, 2013, 5 (3) : 257-279. doi: 10.3934/jgm.2013.5.257

[14]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[15]

Zhan-Dong Mei, Jigen Peng, Yang Zhang. On general fractional abstract Cauchy problem. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2753-2772. doi: 10.3934/cpaa.2013.12.2753

[16]

Zdeněk Skalák. On the asymptotic decay of higher-order norms of the solutions to the Navier-Stokes equations in R3. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 361-370. doi: 10.3934/dcdss.2010.3.361

[17]

Ali Hyder, Juncheng Wei. Higher order conformally invariant equations in $ {\mathbb R}^3 $ with prescribed volume. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2757-2764. doi: 10.3934/cpaa.2019123

[18]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[19]

Min Zhu. On the higher-order b-family equation and Euler equations on the circle. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 3013-3024. doi: 10.3934/dcds.2014.34.3013

[20]

Maike Schulte, Anton Arnold. Discrete transparent boundary conditions for the Schrodinger equation -- a compact higher order scheme. Kinetic & Related Models, 2008, 1 (1) : 101-125. doi: 10.3934/krm.2008.1.101

2017 Impact Factor: 0.561

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]