June  2011, 4(3): 631-640. doi: 10.3934/dcdss.2011.4.631

Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map

1. 

Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0033

Received  April 2009 Revised  September 2009 Published  November 2010

We derive some bounds which can be viewed as an evidence of increasing stability in the problem of recovery of the potential coefficient in the Schrödinger equation from the Dirichlet-to-Neumann map, when frequency (energy level) is growing. These bounds hold under certain a-priori bounds on the unknown coefficient. Proofs use complex- and real-valued geometrical optics solutions. We outline open problems and possible future developments.
Citation: Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.   Google Scholar

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200.   Google Scholar

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 23 (2007), 1689.   Google Scholar

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. Math., 163 (2006), 265.   Google Scholar

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, J. Comput. Phys., 227 (2007), 755.   Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inv. Ill-Posed Probl., 15 (2007), 19.   Google Scholar

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.   Google Scholar

[8]

A. P. Calderon, On an inverse boundary value problem,, in, (1980), 65.   Google Scholar

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003).   Google Scholar

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation,, Soviet Phys. Dokl., 10 (1966), 1033.   Google Scholar

[11]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300.   Google Scholar

[12]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963).   Google Scholar

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 20 (2004), 697.   Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2006).   Google Scholar

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient,", in, 426 (2007), 255.   Google Scholar

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem,, Trans. AMS, 347 (1995), 3375.   Google Scholar

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.   Google Scholar

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.   Google Scholar

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem,, Ann. Math., 142 (1996), 71.   Google Scholar

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem,, Numer. Math., 100 (2005), 697.   Google Scholar

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions,, J. Geom. Anal., 18 (2008), 612.   Google Scholar

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem,", J. d' Anal. Math., 91 (2003), 247.   Google Scholar

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. Math., 125 (1987), 153.   Google Scholar

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence,, Comm. Pure Appl. Math., 41 (1988), 197.   Google Scholar

[25]

M. Taylor, "Partial Differential Equations. II,", Springer-Verlag, (1997).   Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.   Google Scholar

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements,, SIAM J. Math. Anal., 37 (2005), 200.   Google Scholar

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 23 (2007), 1689.   Google Scholar

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane,, Ann. Math., 163 (2006), 265.   Google Scholar

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm,, J. Comput. Phys., 227 (2007), 755.   Google Scholar

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case,, J. Inv. Ill-Posed Probl., 15 (2007), 19.   Google Scholar

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.   Google Scholar

[8]

A. P. Calderon, On an inverse boundary value problem,, in, (1980), 65.   Google Scholar

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory,, Inverse Problems, 19 (2003).   Google Scholar

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation,, Soviet Phys. Dokl., 10 (1966), 1033.   Google Scholar

[11]

P. Hähner, A periodic Faddeev-type solution operator,, J. Diff. Equat., 128 (1996), 300.   Google Scholar

[12]

L. Hörmander, "Linear Partial Differential Operators,", Springer-Verlag, (1963).   Google Scholar

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation,, Inverse Problems, 20 (2004), 697.   Google Scholar

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Springer-Verlag, (2006).   Google Scholar

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient,", in, 426 (2007), 255.   Google Scholar

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem,, Trans. AMS, 347 (1995), 3375.   Google Scholar

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound,, Comm. Pure Appl. Math., 13 (1960), 551.   Google Scholar

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation,, Inverse Problems, 17 (2001), 1435.   Google Scholar

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem,, Ann. Math., 142 (1996), 71.   Google Scholar

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem,, Numer. Math., 100 (2005), 697.   Google Scholar

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions,, J. Geom. Anal., 18 (2008), 612.   Google Scholar

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem,", J. d' Anal. Math., 91 (2003), 247.   Google Scholar

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem,, Ann. Math., 125 (1987), 153.   Google Scholar

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence,, Comm. Pure Appl. Math., 41 (1988), 197.   Google Scholar

[25]

M. Taylor, "Partial Differential Equations. II,", Springer-Verlag, (1997).   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[3]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[4]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[7]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[8]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[9]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[10]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[11]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[16]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[17]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[18]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[19]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]