June  2011, 4(3): 631-640. doi: 10.3934/dcdss.2011.4.631

Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map

1. 

Wichita State University, 1845 Fairmount, Wichita, KS, 67260-0033

Received  April 2009 Revised  September 2009 Published  November 2010

We derive some bounds which can be viewed as an evidence of increasing stability in the problem of recovery of the potential coefficient in the Schrödinger equation from the Dirichlet-to-Neumann map, when frequency (energy level) is growing. These bounds hold under certain a-priori bounds on the unknown coefficient. Proofs use complex- and real-valued geometrical optics solutions. We outline open problems and possible future developments.
Citation: Victor Isakov. Increasing stability for the Schrödinger potential from the Dirichlet-to Neumann map. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 631-640. doi: 10.3934/dcdss.2011.4.631
References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1698.

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. Math., 163 (2006), 265-299.

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comput. Phys., 227 (2007), 755-762.

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inv. Ill-Posed Probl., 15 (2007), 19-35.

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-869.

[8]

A. P. Calderon, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics," Rio de Janeiro, (1980), 65-73.

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory, Inverse Problems, 19 (2003), S105-S137.

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Phys. Dokl., 10 (1966), 1033-1035.

[11]

P. Hähner, A periodic Faddeev-type solution operator, J. Diff. Equat., 128 (1996), 300-308.

[12]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin, 1963.

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations," Springer-Verlag, New York, 2006.

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient," in "Control Methods in PDE-Dynamical Systems," Contemp. Math., 426, AMS, (2007), 255-269.

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem, Trans. AMS, 347 (1995), 3375-3391.

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-587.

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 142 (1996), 71-96.

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem, Numer. Math., 100 (2005), 697-710.

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions, J. Geom. Anal., 18 (2008), 612-631.

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem," J. d' Anal. Math., 91 (2003), 247-268.

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169.

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221.

[25]

M. Taylor, "Partial Differential Equations. II," Springer-Verlag, New York, 1997.

show all references

References:
[1]

G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172.

[2]

G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.

[3]

D. Arallumallige and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 23 (2007), 1689-1698.

[4]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. Math., 163 (2006), 265-299.

[5]

G. Bao, S. Hou and P. Li, Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm, J. Comput. Phys., 227 (2007), 755-762.

[6]

A. L. Bukhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inv. Ill-Posed Probl., 15 (2007), 19-35.

[7]

I. Bushuyev, Stability of recovery of the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-869.

[8]

A. P. Calderon, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Applications to Continuum Physics," Rio de Janeiro, (1980), 65-73.

[9]

D. Colton, H. Haddar and M. Piana, The linear sampling method in inverse electromagnetic scattering theory, Inverse Problems, 19 (2003), S105-S137.

[10]

L. Faddeev, Increasing solutions of the Schrödinger equation, Soviet Phys. Dokl., 10 (1966), 1033-1035.

[11]

P. Hähner, A periodic Faddeev-type solution operator, J. Diff. Equat., 128 (1996), 300-308.

[12]

L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin, 1963.

[13]

T. Hrycak and V. Isakov, Increased stability in the continuation of solutions to the Helmholtz equation, Inverse Problems, 20 (2004), 697-712.

[14]

V. Isakov, "Inverse Problems for Partial Differential Equations," Springer-Verlag, New York, 2006.

[15]

V. Isakov, "Increased Stability in the Continuation for the Helmholtz Equation with Variable Coefficient," in "Control Methods in PDE-Dynamical Systems," Contemp. Math., 426, AMS, (2007), 255-269.

[16]

V. Isakov and A. Nachman, Global uniqueness for a two-dimensional elliptic inverse problem, Trans. AMS, 347 (1995), 3375-3391.

[17]

F. John, Continuous dependence on data for solutions of partial differential equations with a prescribed bound, Comm. Pure Appl. Math., 13 (1960), 551-587.

[18]

N. Mandache, Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435-1444.

[19]

A. Nachman, Global Uniqueness for a two dimensional inverse boundary value problem, Ann. Math., 142 (1996), 71-96.

[20]

F. Natterer and F. Wübbeling, Marching schemes for inverse acoustic scattering problem, Numer. Math., 100 (2005), 697-710.

[21]

R. Novikov, The $\bar{\partial}$-approach to monochromatic inverse scattering in three dimensions, J. Geom. Anal., 18 (2008), 612-631.

[22]

V. Palamodov, Stability in diffraction tomography and a nonlinear "basic theorem," J. d' Anal. Math., 91 (2003), 247-268.

[23]

J. Sylvester and G. Uhlmann, Global uniqueness theorem for an inverse boundary value problem, Ann. Math., 125 (1987), 153-169.

[24]

J. Sylvester and G. Uhlmann, Inverse boundary value problems at the boundary-continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221.

[25]

M. Taylor, "Partial Differential Equations. II," Springer-Verlag, New York, 1997.

[1]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[2]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[3]

Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719-731. doi: 10.3934/ipi.2020033

[4]

Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems and Imaging, 2019, 13 (3) : 597-633. doi: 10.3934/ipi.2019028

[5]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[6]

Deyue Zhang, Yukun Guo, Fenglin Sun, Hongyu Liu. Unique determinations in inverse scattering problems with phaseless near-field measurements. Inverse Problems and Imaging, 2020, 14 (3) : 569-582. doi: 10.3934/ipi.2020026

[7]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[8]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems and Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[9]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[10]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[11]

Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022025

[12]

Leonardo Marazzi. Inverse scattering on conformally compact manifolds. Inverse Problems and Imaging, 2009, 3 (3) : 537-550. doi: 10.3934/ipi.2009.3.537

[13]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems and Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[14]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[15]

Francesco Demontis, Cornelis Van der Mee. Novel formulation of inverse scattering and characterization of scattering data. Conference Publications, 2011, 2011 (Special) : 343-350. doi: 10.3934/proc.2011.2011.343

[16]

Guangsheng Wei, Hong-Kun Xu. On the missing bound state data of inverse spectral-scattering problems on the half-line. Inverse Problems and Imaging, 2015, 9 (1) : 239-255. doi: 10.3934/ipi.2015.9.239

[17]

Kaitlyn (Voccola) Muller. A reproducing kernel Hilbert space framework for inverse scattering problems within the Born approximation. Inverse Problems and Imaging, 2019, 13 (6) : 1327-1348. doi: 10.3934/ipi.2019058

[18]

Xinlin Cao, Huaian Diao, Hongyu Liu, Jun Zou. Two single-measurement uniqueness results for inverse scattering problems within polyhedral geometries. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022023

[19]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[20]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (121)
  • HTML views (0)
  • Cited by (18)

Other articles
by authors

[Back to Top]