June  2011, 4(3): 641-652. doi: 10.3934/dcdss.2011.4.641

A time reversal based algorithm for solving initial data inverse problems

1. 

Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695-8205, United States

2. 

INRIA Nancy Grand-Est (CORIDA), 615 rue du Jardin Botanique, 54600, Villers-lès-Nancy, France

3. 

Institut Elie Cartan Nancy, Université Henri Poincaré, B.P. 70239, 54506 Vandoeuvre-lès-Nancy Cedex, France

Received  April 2009 Revised  November 2009 Published  November 2010

We propose an iterative algorithm to solve initial data inverse problems for a class of linear evolution equations, including the wave, the plate, the Schrödinger and the Maxwell equations in a bounded domain $\Omega$. We assume that the only available information is a distributed observation (i.e. partial observation of the solution on a sub-domain $\omega$ during a finite time interval $(0,\tau)$). Under some quite natural assumptions (essentially : the exact observability of the system for some time $\tau_{obs}>0$, $\tau\ge \tau_{obs}$ and the existence of a time-reversal operator for the problem), an iterative algorithm based on a Neumann series expansion is proposed. Numerical examples are presented to show the efficiency of the method.
Citation: Kazufumi Ito, Karim Ramdani, Marius Tucsnak. A time reversal based algorithm for solving initial data inverse problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 641-652. doi: 10.3934/dcdss.2011.4.641
References:
[1]

C. Alves, A. L. Silvestre, T. Takahashi and M. Tucsnak, Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation,, SIAM J. Control Optim, 48 (2009), 1632. Google Scholar

[2]

D. Auroux and J. Blum, A nudging-based data assimilation method: The Back and Forth Nudging (BFN) algorithm,, Nonlin. Proc. Geophys., 15 (2008), 305. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control. and Optim., 30 (1992), 1024. Google Scholar

[4]

C. Clason and M. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM J. Sci. Comput., 30 (2009), 1. Google Scholar

[5]

R. F. Curtain and G. Weiss, Exponential stabilization of well-posed systems by colocated feedback,, SIAM J. Control Optim., 45 (2006), 273. Google Scholar

[6]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Appl. Math., 69 (2008), 565. Google Scholar

[7]

L. F. Ho, Observabilité frontière de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443. Google Scholar

[8]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: doi:10.1088/0266-5611/24/5/055006. Google Scholar

[9]

B. L. G. Jonsson, M. Gustafsson, V. H. Weston and M. V. de Hoop, Retrofocusing of acoustic wave fields by iterated time reversal,, SIAM J. Appl. Math., 64 (2004), 1954. Google Scholar

[10]

F.-X. Le Dimet, V. Shutyaev and I. Gejadze, On optimal solution error in variational data assimilation: Theoretical aspects,, Russian J. Numer. Anal. Math. Modelling, 21 (2006), 139. Google Scholar

[11]

V. Komornik, On the exact internal controllability of a Petrowsky system,, J. Math. Pures Appl., 71 (1992), 331. Google Scholar

[12]

M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation: Trajectory generation, tracking, and observer design,, Journal of Dynamic Systems, 131 (2009). doi: doi:10.1115/1.3023128. Google Scholar

[13]

P. Kuchment and L. Kunyansky, On the exact internal controllability of a Petrowsky system,, European J. Appl. Math., 19 (2008), 191. Google Scholar

[14]

K. Liu, Locally distributed control and damping for the conservative systems,, SIAM J. Control Optim., 35 (1997), 1574. Google Scholar

[15]

K. D. Phung and X. Zhang, Time reversal focusing of the initial state for kirchhoff plate,, SIAM J. Appl. Math., 68 (2008), 1535. Google Scholar

[16]

K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers,, Automatica, 46 (2010), 1616. Google Scholar

[17]

J. J. Teng, G. Zhang and S. X. Huang, Some theoretical problems on variational data assimilation,, Appl. Math. Mech., 28 (2007), 581. Google Scholar

[18]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups,", Birkäuser, (2009). Google Scholar

[19]

X. Zou, I.-M. Navon and F.-X. Le Dimet, An optimal nudging data assimilation scheme using parameter estimation,, Quart. J. Roy. Met. Soc., 118 (1992), 1193. Google Scholar

show all references

References:
[1]

C. Alves, A. L. Silvestre, T. Takahashi and M. Tucsnak, Solving inverse source problems using observability. Applications to the Euler-Bernoulli plate equation,, SIAM J. Control Optim, 48 (2009), 1632. Google Scholar

[2]

D. Auroux and J. Blum, A nudging-based data assimilation method: The Back and Forth Nudging (BFN) algorithm,, Nonlin. Proc. Geophys., 15 (2008), 305. Google Scholar

[3]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary,, SIAM J. Control. and Optim., 30 (1992), 1024. Google Scholar

[4]

C. Clason and M. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium,, SIAM J. Sci. Comput., 30 (2009), 1. Google Scholar

[5]

R. F. Curtain and G. Weiss, Exponential stabilization of well-posed systems by colocated feedback,, SIAM J. Control Optim., 45 (2006), 273. Google Scholar

[6]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Appl. Math., 69 (2008), 565. Google Scholar

[7]

L. F. Ho, Observabilité frontière de l'équation des ondes,, C. R. Acad. Sci. Paris Sér. I Math., 302 (1986), 443. Google Scholar

[8]

Y. Hristova, P. Kuchment and L. Nguyen, Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media,, Inverse Problems, 24 (2008). doi: doi:10.1088/0266-5611/24/5/055006. Google Scholar

[9]

B. L. G. Jonsson, M. Gustafsson, V. H. Weston and M. V. de Hoop, Retrofocusing of acoustic wave fields by iterated time reversal,, SIAM J. Appl. Math., 64 (2004), 1954. Google Scholar

[10]

F.-X. Le Dimet, V. Shutyaev and I. Gejadze, On optimal solution error in variational data assimilation: Theoretical aspects,, Russian J. Numer. Anal. Math. Modelling, 21 (2006), 139. Google Scholar

[11]

V. Komornik, On the exact internal controllability of a Petrowsky system,, J. Math. Pures Appl., 71 (1992), 331. Google Scholar

[12]

M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation: Trajectory generation, tracking, and observer design,, Journal of Dynamic Systems, 131 (2009). doi: doi:10.1115/1.3023128. Google Scholar

[13]

P. Kuchment and L. Kunyansky, On the exact internal controllability of a Petrowsky system,, European J. Appl. Math., 19 (2008), 191. Google Scholar

[14]

K. Liu, Locally distributed control and damping for the conservative systems,, SIAM J. Control Optim., 35 (1997), 1574. Google Scholar

[15]

K. D. Phung and X. Zhang, Time reversal focusing of the initial state for kirchhoff plate,, SIAM J. Appl. Math., 68 (2008), 1535. Google Scholar

[16]

K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers,, Automatica, 46 (2010), 1616. Google Scholar

[17]

J. J. Teng, G. Zhang and S. X. Huang, Some theoretical problems on variational data assimilation,, Appl. Math. Mech., 28 (2007), 581. Google Scholar

[18]

M. Tucsnak and G. Weiss, "Observation and Control for Operator Semigroups,", Birkäuser, (2009). Google Scholar

[19]

X. Zou, I.-M. Navon and F.-X. Le Dimet, An optimal nudging data assimilation scheme using parameter estimation,, Quart. J. Roy. Met. Soc., 118 (1992), 1193. Google Scholar

[1]

Abdelmouhcene Sengouga. Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints. Evolution Equations & Control Theory, 2020, 9 (1) : 1-25. doi: 10.3934/eect.2020014

[2]

Li Liang. Increasing stability for the inverse problem of the Schrödinger equation with the partial Cauchy data. Inverse Problems & Imaging, 2015, 9 (2) : 469-478. doi: 10.3934/ipi.2015.9.469

[3]

Chuang Zheng. Inverse problems for the fourth order Schrödinger equation on a finite domain. Mathematical Control & Related Fields, 2015, 5 (1) : 177-189. doi: 10.3934/mcrf.2015.5.177

[4]

Kenrick Bingham, Yaroslav Kurylev, Matti Lassas, Samuli Siltanen. Iterative time-reversal control for inverse problems. Inverse Problems & Imaging, 2008, 2 (1) : 63-81. doi: 10.3934/ipi.2008.2.63

[5]

Hans Zwart, Yann Le Gorrec, Bernhard Maschke. Relating systems properties of the wave and the Schrödinger equation. Evolution Equations & Control Theory, 2015, 4 (2) : 233-240. doi: 10.3934/eect.2015.4.233

[6]

Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133

[7]

Anna Doubova, Enrique Fernández-Cara. Some geometric inverse problems for the linear wave equation. Inverse Problems & Imaging, 2015, 9 (2) : 371-393. doi: 10.3934/ipi.2015.9.371

[8]

Imen Benabbas, Djamel Eddine Teniou. Observability of wave equation with Ventcel dynamic condition. Evolution Equations & Control Theory, 2018, 7 (4) : 545-570. doi: 10.3934/eect.2018026

[9]

Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685

[10]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[11]

Grégoire Allaire, M. Vanninathan. Homogenization of the Schrödinger equation with a time oscillating potential. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 1-16. doi: 10.3934/dcdsb.2006.6.1

[12]

Patrick Martinez, Judith Vancostenoble. Exact controllability in "arbitrarily short time" of the semilinear wave equation. Discrete & Continuous Dynamical Systems - A, 2003, 9 (4) : 901-924. doi: 10.3934/dcds.2003.9.901

[13]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[14]

David Gómez-Castro, Juan Luis Vázquez. The fractional Schrödinger equation with singular potential and measure data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7113-7139. doi: 10.3934/dcds.2019298

[15]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[16]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[17]

Olivier Goubet, Ezzeddine Zahrouni. On a time discretization of a weakly damped forced nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1429-1442. doi: 10.3934/cpaa.2008.7.1429

[18]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[19]

Holger Teismann. The Schrödinger equation with singular time-dependent potentials. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 705-722. doi: 10.3934/dcds.2000.6.705

[20]

Thierry Cazenave, Yvan Martel, Lifeng Zhao. Finite-time blowup for a Schrödinger equation with nonlinear source term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1171-1183. doi: 10.3934/dcds.2019050

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]