Advanced Search
Article Contents
Article Contents

Convergence of solutions of a non-local phase-field system

Abstract Related Papers Cited by
  • We show that solutions of a two-phase model involving a non-local interactive term separate from the pure phases from a certain time on, even if this is not the case initially. This result allows us to apply a generalized Lojasiewicz-Simon theorem and to establish the convergence of solutions to a single stationary state as time goes to infinity.
    Mathematics Subject Classification: Primary: 35B40, 35B45; Secondary: 35K65; 45K05.


    \begin{equation} \\ \end{equation}
  • [1]

    N. D. Alikakos, $L^p$-bounds of solutions of reaction diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868.


    C. K. Chen and P. C. Fife, Nonlocal models of phase transitions in solids, Adv. Math. Sci. Appl., 10 (2000), 821-849.


    L. Cherfils, S. Gatti and A. Miranville, Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potential, J. Math. Anal. Appl., 343 (2008), 557-566.


    C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423.


    E. Feireisl, F. Issard-Roch and H. Petzeltová, A non-smooth version of the Łojasiewicz-Simon theorem with applications to non-local phase-field systems, J. Differential Equations, 199 (2004), 1-21.


    E. Feireisl and H. Petzeltová, Non-standard applications of the Łojasiewicz-Simon theory, stabilization to equilibria of solutions to phase-field models, Banach Center Publications, 81 (2008), 175-184.


    E. Feireisl and F. Simondon, Convergence for semilinear degenerate parabolic equations in several space dimensions, J. Dynamics Differential Equations, 12 (2000), 647-673.


    H. Gajewski and J. A. Griepentrog, A descent method for the free energy of multicomponent systems, Disc. Cont. Dyn. Syst, 15 (2006), 505-528.


    H. Gajewski and K. Zacharias, On a nonlocal phase separation model, J. Math. Anal. Appl., 286 (2003), 11-31.


    G. Giacomin and J. L. Lebowitz, Phase segregation dynamics in particle systems with long range interactions I. Macroscopic limits, J. Statist. Phys., 87 (1997), 37-61.


    M. Grasselli, H. Petzeltová and G. Schimperna, Asymptotic behavior of a nonisothermal viscous Cahn-Hilliard equation with inertial term, J. Differential Equations, 239 (2007), 38-60.


    M. Grasselli, H. Petzeltová and G. Schimperna, Long time behavior of the Caginalp system with singular potential, Z. Anal. Anwend., 25 (2006), 51-72.


    M. Grasselli, H. Petzeltová and G. Schimperna, A nonlocal phase-field system with inertial term, Quart. Appl. Math., 65 (2007), 451-469.


    E. Rocca and R. Rossi, Analysis of a nonlinear degenerating PDE system for phase transitions in thermoviscoelastic materials, J. Differential Equations, 345 (2008), 3327-3375.


    W. P. Ziemer, "Weakly Differentiable Functions," Springer-Verlag, New York, 1989.

  • 加载中

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint