
Previous Article
An identification problem for a linear evolution equation in a Banach space and applications
 DCDSS Home
 This Issue

Next Article
Linear evolution equations with strongly measurable families and application to the Dirac equation
Exponential stability of the wave equation with boundary timevarying delay
1.  Université de Valenciennes et du Hainaut Cambrésis, LAMAV and FR CNRS 2956, Le Mont Houy, Institut des Sciences et Techniques de Valenciennes, 59313 Valenciennes Cedex 9 
2.  Dipartimento di Matematica Pura e Applicata, Università di L'Aquila, Via Vetoio, Loc. Coppito, 67010 L'Aquila 
3.  Institut Elie Cartan de Nancy, Université Henri Poincaré, B.P. 70239, 54506 VandoeuvrelèsNancy Cedex, France 
References:
show all references
References:
[1] 
Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1d networks with a delay term in the nodal feedbacks. Networks & Heterogeneous Media, 2007, 2 (3) : 425479. doi: 10.3934/nhm.2007.2.425 
[2] 
Ferhat Mohamed, Hakem Ali. Energy decay of solutions for the wave equation with a timevarying delay term in the weakly nonlinear internal feedbacks. Discrete & Continuous Dynamical Systems  B, 2017, 22 (2) : 491506. doi: 10.3934/dcdsb.2017024 
[3] 
Yanni Guo, Genqi Xu, Yansha Guo. Stabilization of the wave equation with interior input delay and mixed NeumannDirichlet boundary. Discrete & Continuous Dynamical Systems  B, 2016, 21 (8) : 24912507. doi: 10.3934/dcdsb.2016057 
[4] 
Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems  A, 2008, 20 (4) : 10571093. doi: 10.3934/dcds.2008.20.1057 
[5] 
Behzad Azmi, Karl Kunisch. Receding horizon control for the stabilization of the wave equation. Discrete & Continuous Dynamical Systems  A, 2018, 38 (2) : 449484. doi: 10.3934/dcds.2018021 
[6] 
Serge Nicaise. Internal stabilization of a MindlinTimoshenko model by interior feedbacks. Mathematical Control & Related Fields, 2011, 1 (3) : 331352. doi: 10.3934/mcrf.2011.1.331 
[7] 
Martin Gugat, Günter Leugering, Ke Wang. Neumann boundary feedback stabilization for a nonlinear wave equation: A strict $H^2$lyapunov function. Mathematical Control & Related Fields, 2017, 7 (3) : 419448. doi: 10.3934/mcrf.2017015 
[8] 
Mohammad Akil, Ali Wehbe. Stabilization of multidimensional wave equation with locally boundary fractional dissipation law under geometric conditions. Mathematical Control & Related Fields, 2019, 9 (1) : 97116. doi: 10.3934/mcrf.2019005 
[9] 
Mokhtar Kirane, Belkacem SaidHouari, Mohamed Naim Anwar. Stability result for the Timoshenko system with a timevarying delay term in the internal feedbacks. Communications on Pure & Applied Analysis, 2011, 10 (2) : 667686. doi: 10.3934/cpaa.2011.10.667 
[10] 
Serge Nicaise, Cristina Pignotti. Stability of the wave equation with localized KelvinVoigt damping and boundary delay feedback. Discrete & Continuous Dynamical Systems  S, 2016, 9 (3) : 791813. doi: 10.3934/dcdss.2016029 
[11] 
Yaru Xie, Genqi Xu. Exponential stability of 1d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems  S, 2017, 10 (3) : 557579. doi: 10.3934/dcdss.2017028 
[12] 
Guo Lin, Haiyan Wang. Traveling wave solutions of a reactiondiffusion equation with statedependent delay. Communications on Pure & Applied Analysis, 2016, 15 (2) : 319334. doi: 10.3934/cpaa.2016.15.319 
[13] 
Andrei Fursikov. Stabilization of the simplest normal parabolic equation. Communications on Pure & Applied Analysis, 2014, 13 (5) : 18151854. doi: 10.3934/cpaa.2014.13.1815 
[14] 
Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolichyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems  A, 2018, 38 (6) : 30553083. doi: 10.3934/dcds.2018133 
[15] 
Abdelkarim Kelleche, NasserEddine Tatar. Existence and stabilization of a Kirchhoff moving string with a delay in the boundary or in the internal feedback. Evolution Equations & Control Theory, 2018, 7 (4) : 599616. doi: 10.3934/eect.2018029 
[16] 
Qingwen Hu, Huan Zhang. Stabilization of turning processes using spindle feedback with statedependent delay. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 43294360. doi: 10.3934/dcdsb.2018167 
[17] 
Alberto Bressan, Fabio S. Priuli. Nearly optimal patchy feedbacks. Discrete & Continuous Dynamical Systems  A, 2008, 21 (3) : 687701. doi: 10.3934/dcds.2008.21.687 
[18] 
Lassaad Aloui, Moez Khenissi. Boundary stabilization of the wave and Schrödinger equations in exterior domains. Discrete & Continuous Dynamical Systems  A, 2010, 27 (3) : 919934. doi: 10.3934/dcds.2010.27.919 
[19] 
TaiChia Lin. Vortices for the nonlinear wave equation. Discrete & Continuous Dynamical Systems  A, 1999, 5 (2) : 391398. doi: 10.3934/dcds.1999.5.391 
[20] 
V. Pata, Sergey Zelik. A remark on the damped wave equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 611616. doi: 10.3934/cpaa.2006.5.611 
2017 Impact Factor: 0.561
Tools
Metrics
Other articles
by authors
[Back to Top]