Citation: |
[1] |
F. Ali Mehmeti, "Nonlinear Waves in Networks," Mathematical Research, 80, Akademie-Verlag, Berlin, 1994. |
[2] |
G. Chen, Control and stabilization for the wave equation in a bounded domain I, SIAM J. Control Optim., 17 (1979), 66-81. |
[3] |
G. Chen, Control and stabilization for the wave equation in a bounded domain II, SIAM J. Control Optim., 19 (1981), 114-122. |
[4] |
M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972), 57-94. |
[5] |
R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks, SIAM J. Control Optim., 26 (1988), 697-713. |
[6] |
R. Datko, Two examples of ill-posedness with respect to time delays revisited, IEEE Trans. Automatic Control, 42 (1997), 511-515. |
[7] |
R. Datko, J. Lagnese and M. P. Polis, An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24 (1986), 152-156. |
[8] |
L. C. Evans, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math., 26 (1977), 1-42. |
[9] |
P. Grisvard, "Elliptic Problems in Nonsmooth Domains," Monographs and Studies in Mathematics, 21, Pitman, Boston-London-Melbourne, 1985. |
[10] |
T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520. |
[11] |
T. Kato, Linear and quasilinear equations of evolution of hyperbolic type, C.I.M.E., II ciclo (1976), 125-191. |
[12] |
T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems," Lezioni Fermiane, [Fermi Lectures]. Scuola Normale Superiore, Pisa, 1985. |
[13] |
V. Komornik, Rapid boundary stabilization of the wave equation, SIAM J. Control Optim., 29 (1991), 197-208. |
[14] |
V. Komornik, Exact controllability and stabilization, the multiplier method, RAM, 36, Masson, Paris, 1994. |
[15] |
V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. Pures Appl., 69 (1980), 33-54. |
[16] |
J. Lagnese, Decay of solutions of the wave equation in a bounded region with boundary dissipation, J. Differential Equations, 50 (1983), 163-182. |
[17] |
J. Lagnese, Note on boundary stabilization of wave equations, SIAM J. Control Optim., 26 (1988), 1250-1256. |
[18] |
I. Lasiecka and R. Triggiani, Uniform exponential decay of wave equations in a bounded region with $L_2(0,T; L_2(\Sigma))$-feedback control in the Dirichlet boundary conditions, J. Differential Equations, 66 (1987), 340-390. |
[19] |
I. Lasiecka, R. Triggiani and P. F. Yao, Inverse/observability estimates for second-order hyperbolic equations with variable coefficients, J. Math. Anal. Appl., 235 (1999), 13-57. |
[20] |
C. Y. Lin, Time-dependent nonlinear evolution equations, Differential Integral Equations, 15 (2002), 257-270. |
[21] |
J. L. Lions and E. Magenes, "Problèmes aux limites non homogènes et applications. Vol. 1," Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968. |
[22] |
S. Nicaise and C. Pignotti, Boundary stabilization of Maxwell's equations with space-time variable coefficients, ESAIM Control Optim. Calc. Var., 9 (2003), 563-578. |
[23] |
S. Nicaise and C. Pignotti, Stability and instability results of the wave equation with a delay term in the boundary or internal feedback, SIAM J. Control Optim., 45 (2006), 1561-1585. |
[24] |
S. Nicaise and J. Valein, Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks, Netw. Heterog. Media, 2 (2007), 425-479. |
[25] |
S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, to appear in Discrete Contin. Dyn. Syst. Ser. S. |
[26] |
A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations," Applied Math. Sciences, 44, Springer-Verlag, New York, 1983. |
[27] |
R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations," Math. Surveys Monographs, Vol. 49, Amer. Math. Soc., 1997. |
[28] |
G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the boundary control, ESAIM Control Optim. Calc. Var., 12 (2006), 770-785. |
[29] |
E. Zuazua, Exponential decay for the semi-linear wave equation with locally distributed damping, Comm. Partial Differential Equations, 15 (1990), 205-235. |