June  2011, 4(3): 723-744. doi: 10.3934/dcdss.2011.4.723

Linear evolution equations with strongly measurable families and application to the Dirac equation

1. 

Department of Mathematics, Science University of Tokyo, 1-3 Kagurazaka, Sinjuku-ku, Tokyo 162-8601, Japan, Japan

Received  April 2009 Revised  October 2009 Published  November 2010

A new existence and uniqueness theorem is established for linear evolution equations of hyperbolic type with strongly measurable coefficients in a separable Hilbert space. The result is applied to the Dirac equation with time-dependent potential.
Citation: Noboru Okazawa, Kentarou Yoshii. Linear evolution equations with strongly measurable families and application to the Dirac equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 723-744. doi: 10.3934/dcdss.2011.4.723
References:
[1]

H. Brézis, "Opérateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,", Mathematics Studies 5, 5 (1973).   Google Scholar

[2]

H. Brézis, "Analyse Fonctionnelle, Théorie et Applications,", Masson, (1983).   Google Scholar

[3]

Calderón, Commutators of singular integral operators,, Proc. Nat. Acad. Sci., 53 (1965), 1092.  doi: 10.1073/pnas.53.5.1092.  Google Scholar

[4]

G. Da Prato and M. Iannelli, On a method for studying abstract evolution equations in the hyperbolic case,, Comm. Partial Differential Equations, 1 (1976), 585.  doi: 10.1080/03605307608820022.  Google Scholar

[5]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,", Vol. 5, 5 (1992).   Google Scholar

[6]

H. O. Fattorini, "The Cauchy problem,", Encyclopedia Math. Appl., 18 (1983).   Google Scholar

[7]

N. Hayashi, P. I. Naumkin and R. B. E. Wibowo, Nonlinear scattering for a system of nonlinear Klein-Gordon equations,, J. Math. Phys., 49 (2008).   Google Scholar

[8]

R. Ikehata and N. Okazawa, Yosida approximation and nonlinear hyperbolic equation,, Nonlinear Analysis, 15 (1990), 479.   Google Scholar

[9]

S. Ishii, Linear evolution equations $du/dt+A(t)u=0$: A case where $A(t)$ is strongly uniform-measurable,, J. Math. Soc. Japan, 34 (1982), 413.  doi: 10.2969/jmsj/03430413.  Google Scholar

[10]

T. Kato, "Perturbation Theory for Linear Operators,", Grundlehren math. Wissenschaften 132, 132 (1966).   Google Scholar

[11]

T. Kato, Linear evolution equations of "hyperbolic" type,, J. Fac. Sci. Univ. Tokyo, 17 (1970), 241.   Google Scholar

[12]

T. Kato, Linear evolution equations of "hyperbolic" type, II,, J. Math. Soc. Japan, 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[13]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in Lecture Notes in Math., 448 (1975), 25.   Google Scholar

[14]

T. Kato, Singular perturbation and semigroup theory,, in Lecture Notes in Math., 565 (1976), 104.   Google Scholar

[15]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,", Lezioni Fermiane [Fermi Lectures]. Scuola Normale Superiore, (1985).   Google Scholar

[16]

T. Kato, Abstract evolution equations, linear and quasilinear, revisited,, in Lecture Notes in Math., 1540 (1993), 103.   Google Scholar

[17]

K. Kobayasi, On a theorem for linear evolution equations of hyperbolic type,, J. Math. Soc. Japan, 31 (1979), 647.  doi: 10.2969/jmsj/03140647.  Google Scholar

[18]

N. Okazawa, Remarks on linear $m$-accretive operators in a Hilbert space,, J. Math. Soc. Japan, 27 (1975), 160.  doi: 10.2969/jmsj/02710160.  Google Scholar

[19]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces,, J. Math. Soc. Japan, 34 (1982), 677.  doi: 10.2969/jmsj/03440677.  Google Scholar

[20]

N. Okazawa, Abstract quasilinear evolution equations of hyperbolic type, with applications,, in, 7 (1996), 303.   Google Scholar

[21]

N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert space,, Adv. Math. Sci. Appl., 8 (1998), 399.   Google Scholar

[22]

N. Okazawa and A. Unai, Singular perturbation approach to evolution equations of hyperbolic type in Hilbert space,, Adv. Math. Sci. Appl., 3 (): 267.   Google Scholar

[23]

N. Okazawa and A. Unai, Linear evolution equations of hyperbolic type in Hilbert space,, SUT J. Math., 29 (1993), 51.   Google Scholar

[24]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Math. Soc. Monograph, (2005).   Google Scholar

[25]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Math. Sci., 44 (1983).   Google Scholar

[26]

H. Tanabe, "Equations of Evolution,", Monographs and Studies in Math., 6 (1979).   Google Scholar

[27]

H. Tanabe, "Functional Analytic Methods for Partial Differential Equations,", Pure and Applied Mathmatics, 204 (1997).   Google Scholar

[28]

N. Tanaka, Nonautonomous abstract Cauchy problems for strongly measurable families,, Math. Nachr., 274/275 (2004), 130.   Google Scholar

[29]

B. Thaller, "The Dirac Equation,", Texts and Monographs in Physics, (1992).   Google Scholar

[30]

A. Yagi, On a class of linear evolution equations of "hyperbolic" type in reflexive Banach spaces,, Osaka J. Math., 16 (1979), 301.   Google Scholar

show all references

References:
[1]

H. Brézis, "Opérateur maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,", Mathematics Studies 5, 5 (1973).   Google Scholar

[2]

H. Brézis, "Analyse Fonctionnelle, Théorie et Applications,", Masson, (1983).   Google Scholar

[3]

Calderón, Commutators of singular integral operators,, Proc. Nat. Acad. Sci., 53 (1965), 1092.  doi: 10.1073/pnas.53.5.1092.  Google Scholar

[4]

G. Da Prato and M. Iannelli, On a method for studying abstract evolution equations in the hyperbolic case,, Comm. Partial Differential Equations, 1 (1976), 585.  doi: 10.1080/03605307608820022.  Google Scholar

[5]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology,", Vol. 5, 5 (1992).   Google Scholar

[6]

H. O. Fattorini, "The Cauchy problem,", Encyclopedia Math. Appl., 18 (1983).   Google Scholar

[7]

N. Hayashi, P. I. Naumkin and R. B. E. Wibowo, Nonlinear scattering for a system of nonlinear Klein-Gordon equations,, J. Math. Phys., 49 (2008).   Google Scholar

[8]

R. Ikehata and N. Okazawa, Yosida approximation and nonlinear hyperbolic equation,, Nonlinear Analysis, 15 (1990), 479.   Google Scholar

[9]

S. Ishii, Linear evolution equations $du/dt+A(t)u=0$: A case where $A(t)$ is strongly uniform-measurable,, J. Math. Soc. Japan, 34 (1982), 413.  doi: 10.2969/jmsj/03430413.  Google Scholar

[10]

T. Kato, "Perturbation Theory for Linear Operators,", Grundlehren math. Wissenschaften 132, 132 (1966).   Google Scholar

[11]

T. Kato, Linear evolution equations of "hyperbolic" type,, J. Fac. Sci. Univ. Tokyo, 17 (1970), 241.   Google Scholar

[12]

T. Kato, Linear evolution equations of "hyperbolic" type, II,, J. Math. Soc. Japan, 25 (1973), 648.  doi: 10.2969/jmsj/02540648.  Google Scholar

[13]

T. Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in Lecture Notes in Math., 448 (1975), 25.   Google Scholar

[14]

T. Kato, Singular perturbation and semigroup theory,, in Lecture Notes in Math., 565 (1976), 104.   Google Scholar

[15]

T. Kato, "Abstract Differential Equations and Nonlinear Mixed Problems,", Lezioni Fermiane [Fermi Lectures]. Scuola Normale Superiore, (1985).   Google Scholar

[16]

T. Kato, Abstract evolution equations, linear and quasilinear, revisited,, in Lecture Notes in Math., 1540 (1993), 103.   Google Scholar

[17]

K. Kobayasi, On a theorem for linear evolution equations of hyperbolic type,, J. Math. Soc. Japan, 31 (1979), 647.  doi: 10.2969/jmsj/03140647.  Google Scholar

[18]

N. Okazawa, Remarks on linear $m$-accretive operators in a Hilbert space,, J. Math. Soc. Japan, 27 (1975), 160.  doi: 10.2969/jmsj/02710160.  Google Scholar

[19]

N. Okazawa, On the perturbation of linear operators in Banach and Hilbert spaces,, J. Math. Soc. Japan, 34 (1982), 677.  doi: 10.2969/jmsj/03440677.  Google Scholar

[20]

N. Okazawa, Abstract quasilinear evolution equations of hyperbolic type, with applications,, in, 7 (1996), 303.   Google Scholar

[21]

N. Okazawa, Remarks on linear evolution equations of hyperbolic type in Hilbert space,, Adv. Math. Sci. Appl., 8 (1998), 399.   Google Scholar

[22]

N. Okazawa and A. Unai, Singular perturbation approach to evolution equations of hyperbolic type in Hilbert space,, Adv. Math. Sci. Appl., 3 (): 267.   Google Scholar

[23]

N. Okazawa and A. Unai, Linear evolution equations of hyperbolic type in Hilbert space,, SUT J. Math., 29 (1993), 51.   Google Scholar

[24]

E. M. Ouhabaz, "Analysis of Heat Equations on Domains,", London Math. Soc. Monograph, (2005).   Google Scholar

[25]

A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations,", Applied Math. Sci., 44 (1983).   Google Scholar

[26]

H. Tanabe, "Equations of Evolution,", Monographs and Studies in Math., 6 (1979).   Google Scholar

[27]

H. Tanabe, "Functional Analytic Methods for Partial Differential Equations,", Pure and Applied Mathmatics, 204 (1997).   Google Scholar

[28]

N. Tanaka, Nonautonomous abstract Cauchy problems for strongly measurable families,, Math. Nachr., 274/275 (2004), 130.   Google Scholar

[29]

B. Thaller, "The Dirac Equation,", Texts and Monographs in Physics, (1992).   Google Scholar

[30]

A. Yagi, On a class of linear evolution equations of "hyperbolic" type in reflexive Banach spaces,, Osaka J. Math., 16 (1979), 301.   Google Scholar

[1]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[2]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[3]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[6]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[7]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[8]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

[9]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[10]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[11]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[12]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[13]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[14]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[15]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[16]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[19]

Michal Fečkan, Kui Liu, JinRong Wang. $ (\omega,\mathbb{T}) $-periodic solutions of impulsive evolution equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021006

[20]

Xiaorui Wang, Genqi Xu, Hao Chen. Uniform stabilization of 1-D Schrödinger equation with internal difference-type control. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021022

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]