• Previous Article
    Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems
  • DCDS-S Home
  • This Issue
  • Next Article
    Linear evolution equations with strongly measurable families and application to the Dirac equation
June  2011, 4(3): 745-759. doi: 10.3934/dcdss.2011.4.745

Riesz systems, spectral controllability and a source identification problem for heat equations with memory

1. 

Politecnico di Torino, Dipartimento di Matematica, Corso Duca degli Abruzzi 24, 10129 Torino

Received  April 2009 Revised  November 2009 Published  November 2010

In this paper we show that recent results on a Riesz basis associated to a heat equation with memory can be used in order to solve a source identification problem.
Citation: Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745
References:
[1]

A. Belleni-Morante, An integro-differential equation arising from the theory of heat conduction in rigid materials with memory,, Boll. Unione Mat. Ital. B (5), 15 (1978), 470. Google Scholar

[2]

C. Cavaterra, A. Lorenzi and M. Yamamoto, A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation,, Comp. Applied Math., 25 (2006), 229. Google Scholar

[3]

D. D. Ang, R. Gorenflo, V. K. Le and D. D. Trong, "Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction,", Lecture Notes in Mathematics, 1792 (2002). Google Scholar

[4]

C. Alves, A. N. Silvestre, T. Takhahashi and M. Tuksnak, Solving inverse source problems using observability. Application to the Euler-Bernoulli plate equation,, SIAM J. Control Optim., 48 (2009), 1632. Google Scholar

[5]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,", Cambridge University Press, (1995). Google Scholar

[6]

V. Barbu and M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393. Google Scholar

[7]

F. Fagnani and L. Pandolfi, A singular perturbation approach to a recursive deconvolution problem,, SIAM J. Control Optim., 40 (2002), 1384. Google Scholar

[8]

A. Favini and L. Pandolfi, Multiscale Lavrentiev method for systems of Volterra equations of the first kind,, J. Inverse Ill-Posed Probl., 16 (2008), 221. Google Scholar

[9]

X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic memory kernel,, J. Differential Equations, 247 (2009), 2395. Google Scholar

[10]

I. C. Gohberg and M. G. Krejn, "Introduction á la Thèorie des Opèrateurs Linèairs Non Auto-Adjoints dans un Espace Hilbertien" (French) [Linear non selfadjoint operators in a Hilbert space],, Dunod, (1971). Google Scholar

[11]

M. Grasselli and M. Yamamoto, Identifying a spatial body force in linear elastodynamic via traction measurements,, SIAM J. Contr. Optim., 36 (1998), 1190. Google Scholar

[12]

S. Ivanov and L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1. Google Scholar

[13]

I. Lasieska and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems,", Encyclopedia of Mathematics and its Applications, 74 (2000). Google Scholar

[14]

G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid,, Math. Methods in the Appl. Sci., 9 (1987), 413. Google Scholar

[15]

J. L. Lions, "Contrôlabilitè Exacte Perturbations et Stabilization de Systémes Distribuès" (French) [Exact controllability, perturbation and stabilization of distributed systems],, Masson, (1988). Google Scholar

[16]

L. Pandolfi, The controllability of the Gurtin-Pipkin equation: A cosine operator approach,, Applied Mathematics and Optimization, 52 (2005), 143. Google Scholar

[17]

L. Pandolfi, Riesz system and the controllability of heat equations with memory,, Integral Eq. Oper. Theory, 64 (2009), 429. Google Scholar

[18]

L. Pandolfi, Riesz basis and moment method in the study of heat equations with memory in one space dimension,, Discrete Continuous Dynamical Systems, 14 (2010), 1487. Google Scholar

[19]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55. Google Scholar

[20]

M. Yamamoto, Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method,, Inverse problems, 11 (1995), 481. Google Scholar

[21]

R. M. Young, "An Introduction to Nonharmonic Fourier Series,", Academic Press, (1980). Google Scholar

show all references

References:
[1]

A. Belleni-Morante, An integro-differential equation arising from the theory of heat conduction in rigid materials with memory,, Boll. Unione Mat. Ital. B (5), 15 (1978), 470. Google Scholar

[2]

C. Cavaterra, A. Lorenzi and M. Yamamoto, A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation,, Comp. Applied Math., 25 (2006), 229. Google Scholar

[3]

D. D. Ang, R. Gorenflo, V. K. Le and D. D. Trong, "Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction,", Lecture Notes in Mathematics, 1792 (2002). Google Scholar

[4]

C. Alves, A. N. Silvestre, T. Takhahashi and M. Tuksnak, Solving inverse source problems using observability. Application to the Euler-Bernoulli plate equation,, SIAM J. Control Optim., 48 (2009), 1632. Google Scholar

[5]

S. A. Avdonin and S. A. Ivanov, "Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,", Cambridge University Press, (1995). Google Scholar

[6]

V. Barbu and M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393. Google Scholar

[7]

F. Fagnani and L. Pandolfi, A singular perturbation approach to a recursive deconvolution problem,, SIAM J. Control Optim., 40 (2002), 1384. Google Scholar

[8]

A. Favini and L. Pandolfi, Multiscale Lavrentiev method for systems of Volterra equations of the first kind,, J. Inverse Ill-Posed Probl., 16 (2008), 221. Google Scholar

[9]

X. Fu, J. Yong and X. Zhang, Controllability and observability of a heat equation with hyperbolic memory kernel,, J. Differential Equations, 247 (2009), 2395. Google Scholar

[10]

I. C. Gohberg and M. G. Krejn, "Introduction á la Thèorie des Opèrateurs Linèairs Non Auto-Adjoints dans un Espace Hilbertien" (French) [Linear non selfadjoint operators in a Hilbert space],, Dunod, (1971). Google Scholar

[11]

M. Grasselli and M. Yamamoto, Identifying a spatial body force in linear elastodynamic via traction measurements,, SIAM J. Contr. Optim., 36 (1998), 1190. Google Scholar

[12]

S. Ivanov and L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1. Google Scholar

[13]

I. Lasieska and R. Triggiani, "Control Theory for Partial Differential Equations: Continuous and Approximation Theories. I. Abstract Parabolic Systems,", Encyclopedia of Mathematics and its Applications, 74 (2000). Google Scholar

[14]

G. Leugering, Time optimal boundary controllability of a simple linear viscoelastic liquid,, Math. Methods in the Appl. Sci., 9 (1987), 413. Google Scholar

[15]

J. L. Lions, "Contrôlabilitè Exacte Perturbations et Stabilization de Systémes Distribuès" (French) [Exact controllability, perturbation and stabilization of distributed systems],, Masson, (1988). Google Scholar

[16]

L. Pandolfi, The controllability of the Gurtin-Pipkin equation: A cosine operator approach,, Applied Mathematics and Optimization, 52 (2005), 143. Google Scholar

[17]

L. Pandolfi, Riesz system and the controllability of heat equations with memory,, Integral Eq. Oper. Theory, 64 (2009), 429. Google Scholar

[18]

L. Pandolfi, Riesz basis and moment method in the study of heat equations with memory in one space dimension,, Discrete Continuous Dynamical Systems, 14 (2010), 1487. Google Scholar

[19]

J.-P. Puel and M. Yamamoto, Generic well-posedness in a multidimensional hyperbolic inverse problem,, J. Inverse Ill-Posed Probl., 5 (1997), 55. Google Scholar

[20]

M. Yamamoto, Stability, reconstruction formula and regularization for an inverse source hyperbolic problem by a control method,, Inverse problems, 11 (1995), 481. Google Scholar

[21]

R. M. Young, "An Introduction to Nonharmonic Fourier Series,", Academic Press, (1980). Google Scholar

[1]

Yingying Li, Stanley Osher, Richard Tsai. Heat source identification based on $l_1$ constrained minimization. Inverse Problems & Imaging, 2014, 8 (1) : 199-221. doi: 10.3934/ipi.2014.8.199

[2]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[3]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[4]

Yueling Li, Yingchao Xie, Xicheng Zhang. Large deviation principle for stochastic heat equation with memory. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5221-5237. doi: 10.3934/dcds.2015.35.5221

[5]

Fulvia Confortola, Elisa Mastrogiacomo. Optimal control for stochastic heat equation with memory. Evolution Equations & Control Theory, 2014, 3 (1) : 35-58. doi: 10.3934/eect.2014.3.35

[6]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[7]

Fabrizio Colombo, Davide Guidetti. Identification of the memory kernel in the strongly damped wave equation by a flux condition. Communications on Pure & Applied Analysis, 2009, 8 (2) : 601-620. doi: 10.3934/cpaa.2009.8.601

[8]

Luz de Teresa, Enrique Zuazua. Identification of the class of initial data for the insensitizing control of the heat equation. Communications on Pure & Applied Analysis, 2009, 8 (1) : 457-471. doi: 10.3934/cpaa.2009.8.457

[9]

Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020081

[10]

Andrey Sarychev. Controllability of the cubic Schroedinger equation via a low-dimensional source term. Mathematical Control & Related Fields, 2012, 2 (3) : 247-270. doi: 10.3934/mcrf.2012.2.247

[11]

Jong-Shenq Guo, Bei Hu. Blowup rate estimates for the heat equation with a nonlinear gradient source term. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 927-937. doi: 10.3934/dcds.2008.20.927

[12]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[13]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020011

[14]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure & Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[15]

Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 161-190. doi: 10.3934/dcdsb.2019177

[16]

Alfredo Lorenzi, Ioan I. Vrabie. An identification problem for a linear evolution equation in a Banach space and applications. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 671-691. doi: 10.3934/dcdss.2011.4.671

[17]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[18]

Alfredo Lorenzi, Eugenio Sinestrari. An identification problem for a nonlinear one-dimensional wave equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5253-5271. doi: 10.3934/dcds.2013.33.5253

[19]

Huafei Di, Yadong Shang, Xiaoxiao Zheng. Global well-posedness for a fourth order pseudo-parabolic equation with memory and source terms. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 781-801. doi: 10.3934/dcdsb.2016.21.781

[20]

Arturo de Pablo, Guillermo Reyes, Ariel Sánchez. The Cauchy problem for a nonhomogeneous heat equation with reaction. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 643-662. doi: 10.3934/dcds.2013.33.643

2018 Impact Factor: 0.545

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]