August  2011, 4(4): 791-800. doi: 10.3934/dcdss.2011.4.791

Symmetries in an overdetermined problem for the Green's function

1. 

SISSA, via Bonomea 265, 34136 Trieste, Italy

2. 

Dipartimento di Matematica "U. Dini", Università degli Studi di Firenze, viale Morgagni 67/A, 50134 Firenze, Italy

Received  September 2009 Revised  January 2010 Published  November 2010

We consider in the plane the problem of reconstructing a domain from the normal derivative of its Green's function with pole at a fixed point in the domain. By means of the theory of conformal mappings, we obtain existence, uniqueness, (non-spherical) symmetry results, and a formula relating the curvature of the boundary of the domain to the normal derivative of its Green's function.
Citation: Virginia Agostiniani, Rolando Magnanini. Symmetries in an overdetermined problem for the Green's function. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 791-800. doi: 10.3934/dcdss.2011.4.791
References:
[1]

G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations,, Rend. Sem. Mat. Univ. Trieste, 39 (2007), 1.   Google Scholar

[2]

P. L. Duren, "Theory of $H^p$ Spaces,", Academic Press, (1970).   Google Scholar

[3]

P. L. Duren, "Univalent Functions,", Springer-Verlag, (1983).   Google Scholar

[4]

L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,", Cambridge University Press, (2000).   Google Scholar

[5]

G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable,", American Mathematical Society, (1969).   Google Scholar

[6]

B. Gustafsson and A. Vasil'ev, "Conformal and Potential Analysis in Hele-Shaw Cells,", Birkh\, (2006).   Google Scholar

[7]

P. Koosis, "Introduction to $H_p$ Spaces,", Cambridge University Press, (1998).   Google Scholar

[8]

J. L. Lewis and A. Vogel, On some almost everywhere symmetry theorems,, in, 7 (1992), 347.   Google Scholar

[9]

A. I. Markushevich, "Theory of Functions of a Complex Variable,", Prentice-Hall, (1965).   Google Scholar

[10]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems,, Math. Meth. Appl. Sci., 11 (1989), 805.  doi: doi:10.1002/mma.1670110606.  Google Scholar

[11]

J. Privalov, Sur les fonctions conjuguées,, Bulletin de la S. M. F., 44 (1916), 100.   Google Scholar

[12]

M. Sakai, "Quadrature Domains,", Springer-Verlag, (1982).   Google Scholar

[13]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: doi:10.1007/BF00250468.  Google Scholar

[14]

H. F. Weinberger, Remark on the preceding paper of Serrin,, Arch. Rational Mech. Anal., 43 (1971), 319.  doi: doi:10.1007/BF00250469.  Google Scholar

show all references

References:
[1]

G. Alessandrini and E. Rosset, Symmetry of singular solutions of degenerate quasilinear elliptic equations,, Rend. Sem. Mat. Univ. Trieste, 39 (2007), 1.   Google Scholar

[2]

P. L. Duren, "Theory of $H^p$ Spaces,", Academic Press, (1970).   Google Scholar

[3]

P. L. Duren, "Univalent Functions,", Springer-Verlag, (1983).   Google Scholar

[4]

L. E. Fraenkel, "An Introduction to Maximum Principles and Symmetry in Elliptic Problems,", Cambridge University Press, (2000).   Google Scholar

[5]

G. M. Goluzin, "Geometric Theory of Functions of a Complex Variable,", American Mathematical Society, (1969).   Google Scholar

[6]

B. Gustafsson and A. Vasil'ev, "Conformal and Potential Analysis in Hele-Shaw Cells,", Birkh\, (2006).   Google Scholar

[7]

P. Koosis, "Introduction to $H_p$ Spaces,", Cambridge University Press, (1998).   Google Scholar

[8]

J. L. Lewis and A. Vogel, On some almost everywhere symmetry theorems,, in, 7 (1992), 347.   Google Scholar

[9]

A. I. Markushevich, "Theory of Functions of a Complex Variable,", Prentice-Hall, (1965).   Google Scholar

[10]

L. E. Payne and P. W. Schaefer, Duality theorems in some overdetermined boundary value problems,, Math. Meth. Appl. Sci., 11 (1989), 805.  doi: doi:10.1002/mma.1670110606.  Google Scholar

[11]

J. Privalov, Sur les fonctions conjuguées,, Bulletin de la S. M. F., 44 (1916), 100.   Google Scholar

[12]

M. Sakai, "Quadrature Domains,", Springer-Verlag, (1982).   Google Scholar

[13]

J. Serrin, A symmetry problem in potential theory,, Arch. Rational Mech. Anal., 43 (1971), 304.  doi: doi:10.1007/BF00250468.  Google Scholar

[14]

H. F. Weinberger, Remark on the preceding paper of Serrin,, Arch. Rational Mech. Anal., 43 (1971), 319.  doi: doi:10.1007/BF00250469.  Google Scholar

[1]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[2]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[5]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[6]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[7]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[14]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[15]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[16]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[17]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[18]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[19]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[20]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]