August  2011, 4(4): 801-807. doi: 10.3934/dcdss.2011.4.801

A remark on Hardy type inequalities with remainder terms

1. 

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli "Federico II", Complesso Monte S. Angelo, Via Cintia, 80126 Naples, Italy, Italy

2. 

Dipartimento per le Tecnologie, Università degli Studi di Napoli, Italy

Received  October 2009 Revised  February 2010 Published  November 2010

In this paper we focus our attention to some Hardy type inequalities with a remainder term. In particular we find the best value of the constant $h$ for the inequalities

$\int_{\Omega}|\nabla u|^2 dx \geq c \int_{\Omega}\frac{u^2}{|x|^2} dx+ h\int_{\Omega}\frac{u^2}{|x|}dx, \forall u\in H_0^1( \Omega) $

$ \int_{\Omega}|\nabla u|^2dx\geq c\int_{\Omega} \frac{u^2}{|x|^2}dx+ h(\int_{\Omega}|\nabla u| dx)^2, \forall u\in H_0^1 (\Omega)$

where $c\geq 0$ is smaller than the optimal Hardy constant $(N-2)^2/4$.

Citation: Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801
References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505. doi: doi:10.1090/S0002-9939-01-06132-9.

[2]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequality with a remainder term,, Ric. Mat., (). 

[3]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356 (2004), 2169-2196. doi: doi:10.1090/S0002-9947-03-03389-0.

[4]

C. Bennet and R. Sharpley, "Interpolation of Operators," Pure and Appl. Math. Vol. 129, Academic Press, 1988.

[5]

E. Berchio, F. Gazzola and D. Pierotti, Gelfand type elliptic problem under Steklov boundary conditions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, (). 

[6]

H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.

[7]

X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal., 156 (1998), 30-56. doi: doi:10.1006/jfan.1997.3171.

[8]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1275-1295. doi: doi:10.1017/S0308210500001396.

[9]

S. Filippas, V. G. Maz'ja and A. Tertikas, Sharp Hardy-Sobolev inequalities, C. R. Math. Acad. Sci. Paris, 339 (2004), 483-486.

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233. doi: doi:10.1006/jfan.2001.3900.

[11]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356 (2004), 2149-2168. doi: doi:10.1090/S0002-9947-03-03395-6.

[12]

N. Ghossoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751. doi: doi:10.1073/pnas.0803703105.

[13]

G. H. Hardy, Notes on some points in the integral calculus, Messenger Math., 48 (1919), 107-112.

[14]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities," Cambridge University Press, 1934.

[15]

V. G. Maz'ja, "Sobolev Spaces," Transl. from the Russian by T. O. Shaposhnikova, Springer-Verlag, 1985.

[16]

J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: doi:10.1006/jfan.1999.3556.

show all references

References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505. doi: doi:10.1090/S0002-9939-01-06132-9.

[2]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequality with a remainder term,, Ric. Mat., (). 

[3]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356 (2004), 2169-2196. doi: doi:10.1090/S0002-9947-03-03389-0.

[4]

C. Bennet and R. Sharpley, "Interpolation of Operators," Pure and Appl. Math. Vol. 129, Academic Press, 1988.

[5]

E. Berchio, F. Gazzola and D. Pierotti, Gelfand type elliptic problem under Steklov boundary conditions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, (). 

[6]

H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.

[7]

X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal., 156 (1998), 30-56. doi: doi:10.1006/jfan.1997.3171.

[8]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1275-1295. doi: doi:10.1017/S0308210500001396.

[9]

S. Filippas, V. G. Maz'ja and A. Tertikas, Sharp Hardy-Sobolev inequalities, C. R. Math. Acad. Sci. Paris, 339 (2004), 483-486.

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233. doi: doi:10.1006/jfan.2001.3900.

[11]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356 (2004), 2149-2168. doi: doi:10.1090/S0002-9947-03-03395-6.

[12]

N. Ghossoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751. doi: doi:10.1073/pnas.0803703105.

[13]

G. H. Hardy, Notes on some points in the integral calculus, Messenger Math., 48 (1919), 107-112.

[14]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities," Cambridge University Press, 1934.

[15]

V. G. Maz'ja, "Sobolev Spaces," Transl. from the Russian by T. O. Shaposhnikova, Springer-Verlag, 1985.

[16]

J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153. doi: doi:10.1006/jfan.1999.3556.

[1]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[2]

Roberta Bosi, Jean Dolbeault, Maria J. Esteban. Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators. Communications on Pure and Applied Analysis, 2008, 7 (3) : 533-562. doi: 10.3934/cpaa.2008.7.533

[3]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

[4]

Lele Du. Bounds for subcritical best Sobolev constants in W1, p. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3871-3886. doi: 10.3934/cpaa.2021135

[5]

Barbara Brandolini, Francesco Chiacchio, Cristina Trombetti. Hardy type inequalities and Gaussian measure. Communications on Pure and Applied Analysis, 2007, 6 (2) : 411-428. doi: 10.3934/cpaa.2007.6.411

[6]

Juan Luis Vázquez, Nikolaos B. Zographopoulos. Hardy type inequalities and hidden energies. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5457-5491. doi: 10.3934/dcds.2013.33.5457

[7]

Lorenzo Brasco, Eleonora Cinti. On fractional Hardy inequalities in convex sets. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 4019-4040. doi: 10.3934/dcds.2018175

[8]

Biagio Cassano, Lucrezia Cossetti, Luca Fanelli. Improved Hardy-Rellich inequalities. Communications on Pure and Applied Analysis, 2022, 21 (3) : 867-889. doi: 10.3934/cpaa.2022002

[9]

Pradeep Boggarapu, Luz Roncal, Sundaram Thangavelu. On extension problem, trace Hardy and Hardy's inequalities for some fractional Laplacians. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2575-2605. doi: 10.3934/cpaa.2019116

[10]

Duraisamy Balraj, Muthaiah Marudai, Zoran D. Mitrovic, Ozgur Ege, Veeraraghavan Piramanantham. Existence of best proximity points satisfying two constraint inequalities. Electronic Research Archive, 2020, 28 (1) : 549-557. doi: 10.3934/era.2020028

[11]

Manli Song, Jinggang Tan. Hardy inequalities for the fractional powers of the Grushin operator. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4699-4726. doi: 10.3934/cpaa.2020192

[12]

Craig Cowan. Optimal Hardy inequalities for general elliptic operators with improvements. Communications on Pure and Applied Analysis, 2010, 9 (1) : 109-140. doi: 10.3934/cpaa.2010.9.109

[13]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[14]

Stathis Filippas, Luisa Moschini, Achilles Tertikas. Trace Hardy--Sobolev--Maz'ya inequalities for the half fractional Laplacian. Communications on Pure and Applied Analysis, 2015, 14 (2) : 373-382. doi: 10.3934/cpaa.2015.14.373

[15]

Jerome A. Goldstein, Ismail Kombe, Abdullah Yener. A unified approach to weighted Hardy type inequalities on Carnot groups. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2009-2021. doi: 10.3934/dcds.2017085

[16]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure and Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[17]

Elvise Berchio, Debdip Ganguly. Improved higher order poincaré inequalities on the hyperbolic space via Hardy-type remainder terms. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1871-1892. doi: 10.3934/cpaa.2016020

[18]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[19]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete and Continuous Dynamical Systems - S, 2021, 14 (6) : 1945-1966. doi: 10.3934/dcdss.2020469

[20]

Gianluca Gorni, Gaetano Zampieri. Lagrangian dynamics by nonlocal constants of motion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2751-2759. doi: 10.3934/dcdss.2020216

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (0)

[Back to Top]