August  2011, 4(4): 801-807. doi: 10.3934/dcdss.2011.4.801

A remark on Hardy type inequalities with remainder terms

1. 

Dipartimento di Matematica e Applicazioni "Renato Caccioppoli", Università degli Studi di Napoli "Federico II", Complesso Monte S. Angelo, Via Cintia, 80126 Naples, Italy, Italy

2. 

Dipartimento per le Tecnologie, Università degli Studi di Napoli, Italy

Received  October 2009 Revised  February 2010 Published  November 2010

In this paper we focus our attention to some Hardy type inequalities with a remainder term. In particular we find the best value of the constant $h$ for the inequalities

$\int_{\Omega}|\nabla u|^2 dx \geq c \int_{\Omega}\frac{u^2}{|x|^2} dx+ h\int_{\Omega}\frac{u^2}{|x|}dx, \forall u\in H_0^1( \Omega) $

$ \int_{\Omega}|\nabla u|^2dx\geq c\int_{\Omega} \frac{u^2}{|x|^2}dx+ h(\int_{\Omega}|\nabla u| dx)^2, \forall u\in H_0^1 (\Omega)$

where $c\geq 0$ is smaller than the optimal Hardy constant $(N-2)^2/4$.

Citation: Angelo Alvino, Roberta Volpicelli, Bruno Volzone. A remark on Hardy type inequalities with remainder terms. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 801-807. doi: 10.3934/dcdss.2011.4.801
References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: doi:10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequality with a remainder term,, Ric. Mat., ().   Google Scholar

[3]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.  doi: doi:10.1090/S0002-9947-03-03389-0.  Google Scholar

[4]

C. Bennet and R. Sharpley, "Interpolation of Operators,", Pure and Appl. Math. Vol. \textbf{129}, 129 (1988).   Google Scholar

[5]

E. Berchio, F. Gazzola and D. Pierotti, Gelfand type elliptic problem under Steklov boundary conditions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, ().   Google Scholar

[6]

H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems,, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443.   Google Scholar

[7]

X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems,, J. Funct. Anal., 156 (1998), 30.  doi: doi:10.1006/jfan.1997.3171.  Google Scholar

[8]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1275.  doi: doi:10.1017/S0308210500001396.  Google Scholar

[9]

S. Filippas, V. G. Maz'ja and A. Tertikas, Sharp Hardy-Sobolev inequalities,, C. R. Math. Acad. Sci. Paris, 339 (2004), 483.   Google Scholar

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities,, J. Funct. Anal., 192 (2002), 186.  doi: doi:10.1006/jfan.2001.3900.  Google Scholar

[11]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149.  doi: doi:10.1090/S0002-9947-03-03395-6.  Google Scholar

[12]

N. Ghossoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746.  doi: doi:10.1073/pnas.0803703105.  Google Scholar

[13]

G. H. Hardy, Notes on some points in the integral calculus,, Messenger Math., 48 (1919), 107.   Google Scholar

[14]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1934).   Google Scholar

[15]

V. G. Maz'ja, "Sobolev Spaces,", Transl. from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[16]

J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.  doi: doi:10.1006/jfan.1999.3556.  Google Scholar

show all references

References:
[1]

Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application,, Proc. Amer. Math. Soc., 130 (2002), 489.  doi: doi:10.1090/S0002-9939-01-06132-9.  Google Scholar

[2]

A. Alvino, R. Volpicelli and B. Volzone, On Hardy inequality with a remainder term,, Ric. Mat., ().   Google Scholar

[3]

G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants,, Trans. Amer. Math. Soc., 356 (2004), 2169.  doi: doi:10.1090/S0002-9947-03-03389-0.  Google Scholar

[4]

C. Bennet and R. Sharpley, "Interpolation of Operators,", Pure and Appl. Math. Vol. \textbf{129}, 129 (1988).   Google Scholar

[5]

E. Berchio, F. Gazzola and D. Pierotti, Gelfand type elliptic problem under Steklov boundary conditions,, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, ().   Google Scholar

[6]

H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems,, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443.   Google Scholar

[7]

X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems,, J. Funct. Anal., 156 (1998), 30.  doi: doi:10.1006/jfan.1997.3171.  Google Scholar

[8]

N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients,, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1275.  doi: doi:10.1017/S0308210500001396.  Google Scholar

[9]

S. Filippas, V. G. Maz'ja and A. Tertikas, Sharp Hardy-Sobolev inequalities,, C. R. Math. Acad. Sci. Paris, 339 (2004), 483.   Google Scholar

[10]

S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities,, J. Funct. Anal., 192 (2002), 186.  doi: doi:10.1006/jfan.2001.3900.  Google Scholar

[11]

F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms,, Trans. Amer. Math. Soc., 356 (2004), 2149.  doi: doi:10.1090/S0002-9947-03-03395-6.  Google Scholar

[12]

N. Ghossoub and A. Moradifam, On the best possible remaining term in the Hardy inequality,, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746.  doi: doi:10.1073/pnas.0803703105.  Google Scholar

[13]

G. H. Hardy, Notes on some points in the integral calculus,, Messenger Math., 48 (1919), 107.   Google Scholar

[14]

G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities,", Cambridge University Press, (1934).   Google Scholar

[15]

V. G. Maz'ja, "Sobolev Spaces,", Transl. from the Russian by T. O. Shaposhnikova, (1985).   Google Scholar

[16]

J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential,, J. Funct. Anal., 173 (2000), 103.  doi: doi:10.1006/jfan.1999.3556.  Google Scholar

[1]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[2]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[3]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

[4]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[5]

Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020394

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Guojie Zheng, Dihong Xu, Taige Wang. A unique continuation property for a class of parabolic differential inequalities in a bounded domain. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020280

[8]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[9]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[10]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (0)

[Back to Top]