\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A remark on Hardy type inequalities with remainder terms

Abstract Related Papers Cited by
  • In this paper we focus our attention to some Hardy type inequalities with a remainder term. In particular we find the best value of the constant $h$ for the inequalities

    $\int_{\Omega}|\nabla u|^2 dx \geq c \int_{\Omega}\frac{u^2}{|x|^2} dx+ h\int_{\Omega}\frac{u^2}{|x|}dx, \forall u\in H_0^1( \Omega) $

    $ \int_{\Omega}|\nabla u|^2dx\geq c\int_{\Omega} \frac{u^2}{|x|^2}dx+ h(\int_{\Omega}|\nabla u| dx)^2, \forall u\in H_0^1 (\Omega)$

    where $c\geq 0$ is smaller than the optimal Hardy constant $(N-2)^2/4$.

    Mathematics Subject Classification: Primary: 35J20, 26D10; Secondary: 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, N. Chaudhuri and M. Ramaswamy, An improved Hardy-Sobolev inequality and its application, Proc. Amer. Math. Soc., 130 (2002), 489-505.doi: doi:10.1090/S0002-9939-01-06132-9.

    [2]

    A. Alvino, R. Volpicelli and B. VolzoneOn Hardy inequality with a remainder term, Ric. Mat., arXiv:0909.5690v1.

    [3]

    G. Barbatis, S. Filippas and A. Tertikas, A unified approach to improved $L^p$ Hardy inequalities with best constants, Trans. Amer. Math. Soc., 356 (2004), 2169-2196.doi: doi:10.1090/S0002-9947-03-03389-0.

    [4]

    C. Bennet and R. Sharpley, "Interpolation of Operators," Pure and Appl. Math. Vol. 129, Academic Press, 1988.

    [5]

    E. Berchio, F. Gazzola and D. PierottiGelfand type elliptic problem under Steklov boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear.

    [6]

    H. Brezis and J. L. Vazquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Complut. Madrid, 10 (1997), 443-469.

    [7]

    X. Cabré and Y. Martel, Weak eigenfunctions for the linearization of extremal elliptic problems, J. Funct. Anal., 156 (1998), 30-56.doi: doi:10.1006/jfan.1997.3171.

    [8]

    N. Chaudhuri and M. Ramaswamy, Existence of positive solutions of some semilinear elliptic equations with singular coefficients, Proc. Roy. Soc. Edinburgh Sect. A, 131 (2001), 1275-1295.doi: doi:10.1017/S0308210500001396.

    [9]

    S. Filippas, V. G. Maz'ja and A. Tertikas, Sharp Hardy-Sobolev inequalities, C. R. Math. Acad. Sci. Paris, 339 (2004), 483-486.

    [10]

    S. Filippas and A. Tertikas, Optimizing improved Hardy inequalities, J. Funct. Anal., 192 (2002), 186-233.doi: doi:10.1006/jfan.2001.3900.

    [11]

    F. Gazzola, H. C. Grunau and E. Mitidieri, Hardy inequalities with optimal constants and remainder terms, Trans. Amer. Math. Soc., 356 (2004), 2149-2168.doi: doi:10.1090/S0002-9947-03-03395-6.

    [12]

    N. Ghossoub and A. Moradifam, On the best possible remaining term in the Hardy inequality, Proc. Natl. Acad. Sci. USA, 105 (2008), 13746-13751.doi: doi:10.1073/pnas.0803703105.

    [13]

    G. H. Hardy, Notes on some points in the integral calculus, Messenger Math., 48 (1919), 107-112.

    [14]

    G. H. Hardy, J. E. Littlewood and G. Pólya, "Inequalities," Cambridge University Press, 1934.

    [15]

    V. G. Maz'ja, "Sobolev Spaces," Transl. from the Russian by T. O. Shaposhnikova, Springer-Verlag, 1985.

    [16]

    J. L. Vazquez, E. Zuazua, The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential, J. Funct. Anal., 173 (2000), 103-153.doi: doi:10.1006/jfan.1999.3556.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return